版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一学期高等数学期末考试试卷答案一计算题(本题满分35分,共有5道小题,每道小题7分), 1求极限 解: 2设时,与是等价无穷小,与等价无穷小,求常数与 解: 由于当时,与等价无穷小,所以而 所以,因此, 3如果不定积分中不含有对数函数,求常数与应满足的条件 解: 将化为部分分式,有 ,因此不定积分中不含有对数函数的充分必要条件是上式中的待定系数即所以,有比较上式两端的系数,有所以,得 5计算定积分 解: 所以, 5设曲线的极坐标方程为,求曲线的全长 解: 曲线一周的定义域为,即因此曲线的全长为 二(本题满分45分,共有5道小题,每道小题9分), 6求出函数的所有间断点,并指出这些间断点的类型
2、 解: 因此与是函数的间断点 ,因此是函数的第一类可去型间断点 ,因此是函数的第一类可去型间断点 7设是函数在区间上使用Lagrange(拉格朗日)中值定理中的“中值”,求极限 解: 在区间上应用Lagrange中值定理,知存在,使得所以,因此, 令,则有 所以, 8设,求 解: 在方程中,令,得 再在方程两端对求导,得,因此, 9研究方程在区间内实根的个数 解: 设函数, 令,得函数的驻点由于,所以 , 因此,得函数的性态 若,即时,函数在、内各有一个零点,即方程在内有3个实根 若,即时,函数在、内各有一个零点,即方程在内有2个实根 若,即时,函数在有一个零点,即方程在内有1个实根 10设函
3、数可导,且满足,试求函数的极值 解: 在方程中令,得,即在方程组中消去,得积分,注意,得即 由得函数的驻点而所以, ,所以,是函数极小值;是函数极大值三应用题与证明题(本题满分20分,共有2道小题,每道小题10分), 11求曲线的一条切线,使得该曲线与切线及直线和所围成的图形绕轴旋转的旋转体的体积为最小 解: 设切点坐标为,由,可知曲线在处的切线方程为,或因此所求旋转体的体积为 所以,得驻点,舍去由于 ,因而函数在处达到极小值,而且也是最小值因此所求切线方程为 12设函数在闭区间上连续,在开区间内可导,且,证明:至少存在一点,使得 解: 因为在闭区间上连续,所以由积分中值定理,知存在,使得由于,所以,再由,得作函数,则函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 细胞凋亡与骨关节炎
- 基于设计思维教学法的小学语文项目式学习理念与实践模型
- 护理硕士研究生心理资本潜在剖面分析及与情绪幸福感的关系
- 国际志愿者日活动策划
- 湖南省张家界市桑植县2024-2025学年七年级上学期道德与法治期末试卷(含答案)
- 第十八章 平行四边形 评估测试卷(含答案)2024-2025学年数学人教版八年级下册
- 二零二五年度房产共同债权债务处理离婚协议3篇
- 贵州盛华职业学院《影视栏目包装专题设计》2023-2024学年第一学期期末试卷
- 贵州黔南科技学院《设计原理》2023-2024学年第一学期期末试卷
- 新疆巴音郭楞蒙古自治州(2024年-2025年小学六年级语文)人教版课后作业(下学期)试卷及答案
- 英法核动力装置
- GB/T 41837-2022温泉服务温泉水质要求
- YS/T 79-2006硬质合金焊接刀片
- 考研考博-英语-山东师范大学押题密卷附带答案详解篇
- 实用性阅读与交流任务群设计思路与教学建议
- 中医诊疗器具清洗消毒(医院感染防控专家课堂培训课件)
- 通风设施标准
- 药厂生产车间现场管理-PPT课件
- 轴与孔标准公差表
- 防火门施工方案
- 人教PEP版2022-2023六年级英语上册期末试卷及答案(含听力材料)
评论
0/150
提交评论