生理学细胞的基本功能知识点_第1页
生理学细胞的基本功能知识点_第2页
生理学细胞的基本功能知识点_第3页
生理学细胞的基本功能知识点_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章细胞的基本功能一、细胞膜的跨膜物质转运形式有哪些?各有何特点?细胞膜对物质转运形式有单纯扩散、易化扩散、主动转运和人胞、出胞。从能量的角度来看,单纯扩散与易化扩散时,物质是顺电化学梯度通过细胞膜的,不耗能,属于被动转运。主动转运是指物质逆电化学梯度通过细胞膜的耗能的转运过程。这里,电化学梯度包括电学梯度(电位差)和化学梯度(浓度差)两层含义。1、细胞膜转运物质的方式及其各自的特点归纳如下:表2-1细胞膜转运物质的方式及特点转运方式单纯扩散主动转运载体运输通道转运出胞入胞转运物质小分子脂溶性小分子非脂溶性小分子非脂溶性小分子非脂溶性大分子团块大分子团块转运特点顺浓度差顺电位差不耗能逆浓度差

2、逆电位差利用生物泵耗能结构特异性饱和现象竞争性抑制顺浓度差顺电位差不耗能化学门控通道电压门控通道机械门控通道顺浓度差顺电位差不耗能耗能耗能二、细胞的生物电现象1 兴奋性的概念1) 兴奋性:活细胞或组织对外界刺激具有发生反应的能力或特性称为兴奋性。2)可兴奋细胞:神经、肌肉、腺体三种组织接受刺激后,就能迅速表现出某种形式的反应,因此被称作可兴奋细胞或可兴奋组织。在近代生理学中,兴奋性被理解为细胞在接受刺激时产生动作电位的能力,而兴奋就成为动作电位的同义语。只有那些在受刺激时能出现动作电位的组织,才能称为可兴奋组织;兴奋性的高低指的是反应发生的难易程度。2、引起兴奋的条件l刺激的概念:刺激是指能引

3、起细胞、组织和生物体反应的内外环境的变化。l阈强度、阈刺激的概念当一个刺激的其他参数不变时,能引起组织兴奋,即产生动作电位所需的最小刺激强度称为阈强度,简称阈值。衡量兴奋性高低,通常以阈值为指标。阈值的大小与兴奋性的高低呈反变关系,组织或细胞产生兴奋所需的阈值越高,其兴奋性越低;反之,其兴奋性越高。刺激强度等于阈值的刺激称为阈刺激,高于阈值的刺激称为阈上刺激,低于阈值的刺激称为阈下刺激。阈下刺激不能引起组织细胞的兴奋,但不是对组织不产生任何影响。l刺激引起组织兴奋必须达到的条件刺激除能被机体或组织细胞感受外,还必须是阈刺激。如果刺激强度小于阈强度,则这个刺激不论持续多长时间也不会引起组织兴奋;

4、如果刺激的持续时间小于时间阈值,则不论使用多么大的强度也不会引起组织兴奋。3、组织兴奋恢复过程中兴奋性的变化如何?l织兴奋恢复过程中兴奋性的变化总结表2-2组织兴奋恢复过程中兴奋性的变化名称兴奋性阈值引起兴奋条件绝对不应期相对不应期超常期低常期等于0低于正常高于正常低于正常增大减小增大不可能产生兴奋阈上刺激方可小于阈刺激也可阈上刺激方可l绝对不应期的存在的意义:绝对不应期的持续时间相当于前次兴奋所产生动作电位主要部分的持续时间,绝对不应期的长短决定了两次兴奋间的最小时间间隔。细胞在单位时间内所能兴奋的次数,亦即它能产生动作电位的次数总不会超过绝对不应期所占时间的倒数。4、试述细胞的生物电现象及

5、其产生机制。1) 静息电位的概念静息电位是指细胞处于安静状态(未受刺激)时,存在于细胞膜内外两侧的电位差,又称跨膜静息电位。2) 静息电位产生机制细胞膜两侧带电离子的分布和运动是细胞生物电产生的基础。静息电位也不例外。A.产生的条件:细胞内的K+勺浓度高于细胞外近30倍。在静息状态下,细胞膜对K+勺通透性大,对其他离子通透性很小。B.产生的过程:K+顺浓度差向膜外扩散,膜内C1-因不能透过细胞膜被阻止在膜内。致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。当促使K的卜流的浓度差和阻止K矽卜流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状

6、态,即静息电位。这就是说,细胞内外K+勺不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+勺平衡电位。4)动作电位的概念指可兴奋细胞受到刺激时,在静息电位的基础上爆发的一次膜两侧电位的快速可逆的倒转,并可以扩布的电位变化。5)动作电位的产生机制 组成动作电位包括上升支(去极相,膜内电位由一90mV±升到+30mV相下降支(复极相,恢复到接近刺激前的静息电位水平)。上开支超过0mV勺净变正部分,称为超射。上升支持续时间很短,约05ms。 产生的条件:(1)细胞内外存在着Na+勺浓度差,Na+E细胞外的浓度是细胞内的13倍之多。

7、(2)当细胞受到一定刺激时,膜对Na+勺通透性增加。 产生的过程细胞外的Na中顺浓度梯度流人细胞内-当膜内负电位减小到阈电位时-Na+1道全部开放-Na+顺浓度梯度瞬间大量内流,细胞内正电荷增加f膜内负电位从减小到消失进而出现膜内正电位-膜内正电位增大到足以对抗由浓度差所致的Na呐流-跨膜离子移动和膜两侧电位达到一个新的平衡点,形成锋电位的上升支,该过程主要是Na呐流形成的平衡电位,故称Na+F衡电位。在去极化的过程中,Na+!道失活而关闭,K+1道被激活而开放,Na呐流停止,膜对K+的通透性增加,K+昔助于浓度差和电位差快速外流,使膜内电位迅速下降(负值迅速上升),直至恢复到静息值,由+30

8、mV窜至一90mV形成动作电位的下降支(复极相)。该过程是K+#流形成的。当膜复极化结束后,膜上的NaK+泵开始主动将膜内的Na+1出膜外,同时把流失到膜外的K+M回膜内,NaK+的转运是耦联进行的,以恢复兴奋前的离子分布的浓度。6)动作电位的特点“全或无”现象:该现象可以表现在两个方面:一是动作电位幅度。细胞接受有效刺激后,一旦产生动作电位,其幅值就达最大,增大刺激强度,动作电位的幅值不再增大。二是不衰减传导。动作电位在细胞膜的某一处产生后,可沿着细胞膜进行传导,无论传导距离多远,其幅度和形状均不改变。脉冲式传导:由于不应期的存在,使连续的多个动作电位不可能融合在一起,因此两个动作电位之间总

9、是具有一定的间隔,形成脉冲式。三、引起兴奋的关键阈电位1、阈电位的定义阈电位在外加有效刺激作用下,膜内电位去极化到某一临界值能引起大量Na呐流而产生动作电位,这一临界值称为阈电位。2、阈电位和动作电位的关系阈电位是导致Na+ffi道开放的关键因素,止匕时Na十内流与Na十通道开放之间形成一种正反馈过程,其结果是膜内去极化迅速发展,形成动作电位的上升支。四局部兴奋与动作电位的区别1、局部反应及其产生机制阈下刺激不引起细胞或组织产生动作电位,但它可以引起受刺激的膜局部出现一个较小的膜的去极化反应,称为局部反应或局部兴奋。局部反应产生的原理,亦是由于Na十内流所致,只是在阈下刺激时,Na十通道开放数

10、目少,Na十内流少,因而不能引起真正的兴奋或动作电位。2、局部反应和动作电位的区别:表2-3局部反应和动作电位的区别局部反应动作电位刺激强度阈下刺激等于、大于阈刺激钠通道开放少多电位变化小于阈电位等于、大于阈电位不应期无有总和有无全或无无,电位幅度随刺激强度的增加而改变有传播电紧张性扩布,衰减性,不能远传局部电流形式传导,非衰减性,可以远传五兴奋在同一细胞上如何传导动作电位一旦在细胞膜的某一点产生,它就会沿着细胞膜向周围传播,直到整个细胞膜都产生动作电位为止。动作电位在单一细胞上的传播叫做传导。动作电位的传导实质上是局部电流流动的结果。在有髓纤维兴奋时,动作电位只能在朗飞氏结处产生,兴奋传导时

11、的局部电流亦只能出现在兴奋处的朗飞氏结和未兴奋的朗飞氏结之间,于是形成了动作电位的跳跃式传导。有髓纤维跳跃式传导,加之其轴突较粗、电阻小,因此其传导速度要比无髓纤维快得多。六试述神经与肌肉接头处的兴奋传递过程及其特点。u神经肌肉接头兴奋传递的过程:神经末梢兴奋接头前膜去极化前膜对Ca2+的通透性增加Ca2+顺浓度差流人膜内内流的Ca2唯使含有ACh的囊泡破裂,ACh被释放ACh在接头间隙扩散ACh与终板膜的N受体结合终板膜对Na+ffi透性增高,Na呐流终板电位(局部电位)终板电位总和并达到阈电位肌细胞产生动作电位。神经肌肉接头兴奋传递的特点:(1)单向传递;(2)突触延搁;(3)易受外界因素影胸。注意:终板电位是局部电位,具有局部电位的所有特征。终板电位不能引起肌肉收缔。每

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论