全等三角形证明中考题精选[有答案解析]_第1页
全等三角形证明中考题精选[有答案解析]_第2页
全等三角形证明中考题精选[有答案解析]_第3页
全等三角形证明中考题精选[有答案解析]_第4页
全等三角形证明中考题精选[有答案解析]_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 .WORD 完美格式. 七年级数学下-全等三角形证明题1如图,已知AD是ABC的中线,分别过点B、C作BEAD于点E,CFAD交AD的延长线于点F,求证:BE=CF2如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°(1)操作发现:如图2,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,填空:线段DE与AC的位置关系是_;设BDC的面积为S1,AEC的面积为S2,则S1与S2的数量关系是_ (2)猜想论证当DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC

2、、CE边上的高,请你证明小明的猜想(3)拓展探究已知ABC=60°,点D是角平分线上一点,BD=CD=4,DEAB交BC于点E(如图4)若在射线BA上存在点F,使SDCF=SBDE,请直接写出相应的BF的长3如图,把一个直角三角形ACB(ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H(1)求证:CF=DG;(2)求出FHG的度数 4如图所示,在ABC中,D、E分别是AB、AC上的点,DEBC,如图,然后将ADE绕A点顺时针旋转一定角度,得到图,然后将B

3、D、CE分别延长至M、N,使DM=BD,EN=CE,得到图,请解答下列问题:(1)若AB=AC,请探究下列数量关系:在图中,BD与CE的数量关系是_;在图中,猜想AM与AN的数量关系、MAN与BAC的数量关系,并证明你的猜想;(2)若AB=kAC(k1),按上述操作方法,得到图,请继续探究:AM与AN的数量关系、MAN与BAC的数量关系,直接写出你的猜想,不必证明4(1)如图,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE=90°当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;将图1中的ADE绕点A顺时针旋转角(0°90

4、°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由(2)当ABC和ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由甲:AB:AC=AD:AE=1,BAC=DAE90°;乙:AB:AC=AD:AE1,BAC=DAE=90°;丙:AB:AC=AD:AE1,BAC=DAE90° 6CD经过BCA顶点C的一条直线,CA=CBE,F分别是直线CD上两点,且BEC=CFA=(1)若直线CD经过BCA的内部,且E,F在射线CD上,请解决下面两个问题:如图1,若BCA=90°,=90°

5、,则BE_CF;EF_|BEAF|(填“”,“”或“=”);如图2,若0°BCA180°,请添加一个关于与BCA关系的条件_,使中的两个结论仍然成立,并证明两个结论成立(2)如图3,若直线CD经过BCA的外部,=BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明) 7如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;(2)若CE=mBD(m为正数),试猜想GE与GD有何关系(只写结论,不证明) 8(1)已知:如图,在AOB和COD中,OA=OB,OC=OD,AOB=COD=60°,求证:AC=BD;APB=60度;(2)如图,在AOB和

6、COD中,若OA=OB,OC=OD,AOB=COD=,则AC与BD间的等量关系式为_;APB的大小为_;(3)如图,在AOB和COD中,若OA=kOB,OC=kOD(k1),AOB=COD=,则AC与BD间的等量关系式为_;APB的大小为 10已知:EGAF,AB=AC,DE=DF;求证:BE=CF参考答案与试题解析2解:(1)DEC绕点C旋转点D恰好落在AB边上,AC=CD,BAC=90°B=90°30°=60°,ACD是等边三角形,ACD=60°,又CDE=BAC=60°,ACD=CDE,DEAC;B=30°,C=90&

7、#176;,CD=AC=AB,BD=AD=AC,根据等边三角形的性质,ACD的边AC、AD上的高相等,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;故答案为:DEAC;S1=S2;(2)如图,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90°,DCM+BCN=180°90°=90°,ACN=DCM,在ACN和DCM中,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;3、解答:(1)证明:在CBF和DBG中,CBFDBG(SAS),CF

8、=DG;(2)解:CBFDBG,BCF=BDG,又CFB=DFH,DHF=CBF=60°,FHG=180°DHF=180°60°=120°4、解答:解:(1)结论:BD=CE,BDCE;结论:BD=CE,BDCE;理由如下:BAC=DAE=90°BACDAC=DAEDAC,即BAD=CAE在ABD与ACE中, ABDACE(SAS)BD=CE延长BD交AC于F,交CE于H在ABF与HCF中,ABF=HCF,AFB=HFC;CHF=BAF=90°BDCE(2)结论:乙AB:AC=AD:AE,BAC=DAE=90°解答

9、:解:(1)BD=CE;AM=AN,MAN=BAC,DAE=BAC,CAE=BAD,在BAD和CAE中CAEBAD(SAS),ACE=ABD,DM=BD,EN=CE,BM=CN,在ABM和ACN中,ABMACN(SAS),AM=AN,BAM=CAN,即MAN=BAC;(2)AM=kAN,MAN=BAC56解答:解:(1)BCA=90°,=90°,BCE+CBE=90°,BCE+ACF=90°,CBE=ACF,CA=CB,BEC=CFA;BCECAF,BE=CF;EF=|BEAF|所填的条件是:+BCA=180°证明:在BCE中,CBE+BCE=

10、180°BEC=180°BCA=180°,CBE+BCE=BCA又ACF+BCE=BCA,CBE=ACF,又BC=CA,BEC=CFA,BCECAF(AAS)BE=CF,CE=AF,又EF=CFCE,EF=|BEAF|(2)EF=BE+AF7解答:证明:(1)过D作DFCE,交BC于F,则E=GDFAB=AC,ACB=ABCDFCE,DFB=ACB,DFB=ACB=ABCDF=DBCE=BD,DF=CE,在GDF和GEC中,GDFGEC(AAS)GE=GD(2)GE=mGD9解答:解:(1)AOB=COD=60°,AOB+BOC=COD+BOC即:AOC=BOD又OA=OB,OC=OD,AOCBODAC=BD由得:OAC=OBD,AEO=PEB,APB=180°(BEP+OBD),AOB=180°(OAC+AEO),APB=AOB=60°(2)AC=BD, (3)AC=kBD,180°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论