版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、五、典型题型1. 已知线段a、b,画一条线段,使其等于分析 所要画的线段等于,实质上就是画法:1画线段 2在AB的延长线上截取线段AC就是所画的线段说明1尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去2其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图2.如下图,已知线段a和b,求作一条线段AD使它的长度等于2ab错解 如图(1),(1)作射线AM;(2)在射线AM上截取AB=BC=a,CD=b,则线段AD即为所求错解分析 主要是作图语言不严密,当在射线上两次截取时,要写清是否顺次,而在求线段差时,要交待截取的方向图(1) 图(2)正解 如图(2),(1)
2、作射线AM;(2)在射线AM上,顺次截取AB=BC=a;(3)在线段CA上截取CD=b,则线段AD就是所求作的线段3. 求作一个角等于已知角MON(如图1)图(1) 图(2)错解 如图(2),(1)作射线;(2)在图(1),以O为圆心作弧,交OM于点A,交ON于点B;(3)以为圆心作弧,交于C;(4)以C为圆心作弧,交于点D;(5)作射线则即为所求的角错解分析 作图过程中出现了不准确的作图语言,在作出一条弧时,应表达为:以某点为圆心,以其长为半径作弧正解 如图(2),(1)作射线;(2)在图(1)上,以O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(3)以为圆心,OA的长为半径作弧,
3、交于点C;(4)以C为圆心,以AB的长为半径作弧,交前弧于点D;(5)过点D作射线则就是所要求作的角4. 如下图,已知及线段a,求作等腰三角形,使它的底角为,底边为a分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角B=C=,底边BC=a,故可以先作B=,或先作底边BC=a作法 如下图(1)MBN=;(2)在射线BM上截取BC=a;(3)以C为顶点作PCB=,射线CP交BN于点AABC就是所要求作的等腰三角形说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤5. 如图(1),已知直线AB及直线AB外一点C,过点C作CDA
4、B(写出作法,画出图形)分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角ECD=EFB即可作法 如图(2)图(1) 图(2)(1)过点C作直线EF,交AB于点F;(2)以点F为圆心,以任意长为半径作弧,交FB于点P,交EF于点Q;(3)以点C为圆心,以FP为半径作弧,交CE于M点;(4)以点M为圆心,以PQ为半径作弧,交前弧于点D;(5)过点D作直线CD,CD就是所求的直线说明 作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由6. 如下图,ABC中,a=5cm,b=3cm,c=3.5cm,B=,C=,请你从中选择适当的数据,画出与ABC全等的三角形(把你能
5、画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据)分析 本题实质上是利用原题中的5个数据,列出所有与ABC全等的各种情况,依据是SSS、SAS、AAS、ASA解 与ABC全等的三角形如下图所示7. 正在修建的中山北路有一形状如下图所示的三角形空地需要绿化拟从点A出发,将ABC分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法)(2003年,桂林)分析 这是尺规作图在生活中的具体应用要把ABC分成面积相等的三个三角形,且都是从A点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC边的三等分点即可作法 如
6、下图,找三等分点的依据是平行线等分线段定理8. 已知AOB,求作AOB的平分线OC错解 如图(1)作法 (1)以O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧相交于C点;(3)连结OC,则OC就是AOB的平分线错解分析 对角平分线的概念理解不够准确而致误作法(3)中连结OC,则OC是一条线段,而角平分线应是一条射线图(1) 图(2)正解 如图(2)(1)以点O为圆心,任意长为半径作弧,分别交OA、OB于D、E两点;(2)分别以D、E为圆心,以大于DE的长为半径作弧,两弧交于C点;(3)作射线OC,则OC为AOB的平分线9. 如
7、图(1)所示,已知线段a、b、h(hb) 求作ABC,使BC=a,AB=b, BC边上的高AD=h图(1)错解 如图(2),(1)作线段BC=a;(2)作线段BA=b,使ADBC且AD=h则ABC就是所求作的三角形错解分析 不能先作BC;第2步不能同时满足几个条件,完全凭感觉毫无根据;未考虑到本题有两种情况对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD,再作AB,最后确定BC图(2) 图(3)正解 如图(3)(1)作直线PQ,在直线PQ上任取一点D,作DMPQ;(2)在DM上截取线段DA=h;(3)以A为圆心,以b为半径画弧交射线DP于B;(4)以B为圆心,以a为半径画弧,
8、分别交射线BP和射线BQ于和;(5)连结、,则(或)都是所求作的三角形10. 如下图,已知线段a,b,求作RtABC,使ACB=90°,BC=a,AC=b(用直尺和圆规作图,保留作图痕迹)分析 本题解答的关键在于作出ACB=90°,然后确定A、B两点的位置,作出ABC作法 如下图(1)作直线MN:(2)在MN上任取一点C,过点C作CEMN;(3)在CE上截取CA=b,在CM上截取CB=a;(4)连结AB,ABC就是所求作的直角三角形说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序若把握不好作图顺序,要先画出假设图形11. 如下图,已知钝角ABC,B是钝角
9、求作:(1)BC边上的高;(2)BC边上的中线(写出作法,画出图形)分析 (1)作BC边上的高,就是过已知点A作BC边所在直线的垂线;(2)作BC边上的中线,要先确定出BC边的中点,即作出BC边的垂直平分线作法 如下图(1)在直线CB外取一点P,使A、P在直线CB的两旁;以点A为圆心,AP为半径画弧,交直线CB于G、H两点;分别以G、H为圆心,以大于GH的长为半径画弧,两弧交于E点;作射线AE,交直线CB于D点,则线段AD就是所要求作的ABC中BC边上的高(2)分别以B、C为圆心,以大于BC的长为半径画弧,两弧分别交于M、N两点;作直线MN,交BC于点F;连结AF,则线段AF就是所要求作的AB
10、C中边BC上的中线说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点12. 如图(1)所示,在图中作出点C,使得C是MON平分线上的点,且AC=OC图(1) 图(2)分析 由题意知,点C不仅要在MON的平分线上,且点C到O、A两点的距离要相等,所以点C应是MON的平分线与线段OA的垂直平分线的交点作法 如图(2)所示(1)作MON的平分线OP;(2)作线段OA的垂直平分线EF,交OP于点C,则点C就是所要求作的点说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等(2)两条直线交于一点13. 如下图,已知线段a、b、求作梯形ABCD,使AD=a,BC=b,ADBC,B=;C=分析 假定梯形已经作出,作AEDC交BC于E,则AE将梯形分割为两部分,一部分是ABE,另一部分是AECD在ABE中,已知B=,AEB=,BE=b-a,所以,可以首先把它作出来,而后作出AECD作法 如下图(1)作线段BC=b;(2)在BC上截取B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游泳馆勘察技术标投标
- 环保工程招投标委托书模板
- 农药原料招投标专员操作指南
- 本溪市供热服务用户体验优化
- 亲子活动中心租赁
- 新能源汽车项目保函策略
- 旅游服务提升工程中心管理办法
- 老旧小区改造评估师招聘协议
- 医疗资源区二手房买卖范本
- 交通运输枢纽站房租赁合同
- 咯血的介入治疗
- 教师专业成长概述教师专业发展途径PPT培训课件
- 球磨机安装专项施工方案
- 阀门压力等级对照表优质资料
- GMP质量管理体系文件 中药材干燥SOP
- YY/T 0874-2013牙科学旋转器械试验方法
- GB/T 25217.10-2019冲击地压测定、监测与防治方法第10部分:煤层钻孔卸压防治方法
- GB/T 21010-2007土地利用现状分类
- 下库大坝混凝土温控措施(二次修改)
- 医药代表初级培训课程课件
- SAT长篇阅读练习题精选14篇(附答案)
评论
0/150
提交评论