浅谈小学数学教学中数学思想方法的渗透_第1页
浅谈小学数学教学中数学思想方法的渗透_第2页
浅谈小学数学教学中数学思想方法的渗透_第3页
浅谈小学数学教学中数学思想方法的渗透_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、浅谈小学数学教学中数学思想方法的渗透   小学数学教学内容贯穿着两条主线,数学基础知识和数学思想方法。数学基础知识是一条明线,直接用文字的形式写在教材里,反映着知识间的纵向联系。数学思想方法则是一条暗线,反映着知识间的横向联系,隐藏在基础知识的背后,需要教师加以分析、提炼才能使之显露出来。数学知识是对生活的提炼,数学思想方法是对数学知识的提炼。美国教育心理学家布鲁纳指出:掌握基本的数学思想和方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此在小学

2、数学的教学中要不失时机地对学生进行数学思想方法的渗透,掌握数学思想方法是数学学习的最高境界。0yFB!ixtx=kR$小学教案课.一、通过学习数学史了解数学思想方法。小学数学思想方法主要有:化归思想、优化思想、符号化思想、集合思想、函数思想、极限思想、分类思想、概率统计思想等;归纳与演绎,分析与综合,抽象与概括,联想与猜想等方法。数学史本身就蕴涵一些重要的数学思想和方法。例如:向学生介绍十进制计数法的由来,介绍祖冲之关于圆周率的探索史等让学生了解数学知识产生的背景和发展的过程,知道来龙去脉,也就把握了知识本源和数学思想方法。二、通过挖掘教材体验数学思想方法。小学教材中数学思想方法呈现隐蔽形式,

3、教师要认真分析和研究教材,理清教材的体系和脉络,统揽教材全局,高屋建瓴,建立各类概念、知识点之间的联系,归纳和揭示其蕴含在数学知识中的数学思想方法。极限思想在教材中有许多地方渗透,如在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,初步体会“极限”思想。在循环小数这一部分内容,在教学l÷30.333是一循环小数,它的小数点后面的数字是写不完的,是无限的。在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。再如,在“圆的面积”这节中圆面积的求法:先把圆分成相等的两部分,再把两个半圆分成若干等分,然后把它剪开,再

4、拼成近似于长方形的图形。如果把圆等分的份数越多,拼成的图形越接近于长方形。这时长方形的面积就越接近圆的面积了。这部分内容应让学生体会到这是一种用“无限逼近”的方法来求得圆面积的,也就是验极限思想的运用。三、通过教学过程渗透数学思想方法。如果在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、实验、分析、抽象、概括的过程中看到知识负载的方法、蕴涵的思想,那么,学生所掌握的知识就是鲜活的,可迁移的,学生的数学素质才能得到质的飞跃。如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不

5、仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块大小必须统一”的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。四、通过解决实际问题应用数学思想方法。在教学中,要鼓励学生应用数学知识去分析和解决生活中的实际问题,引导学生抽象、概括,建立数学模型,探求问题解决的方法,使学生进一步体验数学思想方法。例:生活中“付整找零”的生活原型是学生熟悉的事例。教学中创设情景:小明的爸爸原来有325 元钱,这个月又可以领到298元奖金,让学生扮演

6、爸爸和发奖人,发奖人给爸爸3张100元的,爸爸要找回2元。把这样的生活原型提炼为数学模型,编成应用题,学生在计算325+298时,用325+298=325+300-2,从而明白“多加要减”的算理。象这样从学生熟悉的“常识”上升为“数理”就是一个建模的过程。再如教学“三角形”时,教师创设小明上学的情境,出示图例:小明家和学校、商店、邮局形成两个三角形,让学生在情境中初步感知小明走中间这条路上学是最近的,使学生产生探究其原因的欲望。接着让学生在教师提供的4根小棒(4cm、5cm、6cm、10cm)中任选三根摆三角形。学生通过操作发现,能摆成三角形的是:5cm、6cm、10cm和4cm、5cm、6c

7、m,不能摆成三角形的是:4cm、5cm、10cm和4cm、6cm、10cm。让学生通过观察、猜测、验证,从而归纳出“三角形任意两边之和大于第三边”的结论。五、通过归纳总结提炼数学思想方法。在课堂教学小结、单元复习时,适时对某种数学思想方法进行概括和强化,不仅可以使学生从数学思想方法的高度把握知识的本质和内在的规律,而且可使学生逐步体会数学思想方法的精神实质。现行小学数学教材内容,许多知识都可以用化归思想方法思考。如:几何教学中运用变换思想,将原图形通过割补、分割、平移、翻折等途径加以“变形”,把未知的面积计算问题转化成已知图形的面积计算问题,可使题目变难为易,求解也水到渠成。小学课本中,除了长

8、方形的面积计算公式之外,其他平面图形的面积计算公式都是通过变换原来的图形而得到的。例如,平行四边形通过割补、平移转化成长方形,三角形和梯形也都可以转化成平行四边形来求出面积。圆也可以通过分割转化成长方形。利用这些图形变换,从而概括出结论。*-Fq87Rp*n小这里的归纳,不仅使每个学生明确了不同图形面积计算的相应方法,而且领悟到了还有比计算公式更重要的东西。那就是:把新知转化为旧知,再利用旧知解决新知的化归思想方法。总之,在我们日常教学中,只要认真发掘教材内容中隐含的数学思想方法,把它渗透到自己的备课中,渗透到学生思维过程中,渗透到知识形成的过程中,渗透到课堂小结中,渗透到学生作业中,使学生在探究学习中渗透数学思想方法,在操作中亲身经历、感受、理解、掌握和领悟数学思想方法,才能真正地让数学思想方法在与知识能力形成的过程中共同生成。22000002222222202222002008年222222222222里pV+r            

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论