版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一 个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的
2、磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工
3、作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻 抗ZS和频率的关系曲线。图2铁氧体磁环的阻抗和频率的关系 在110MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所
4、示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 图3铁氧体磁环的磁导率、损耗系数和频率的关系 图4给出三种不同材料的总阻抗和频率的关系。J材料在超过120MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100。在2MHz以上或以下,对于滤波器所要求的规范,J或W是优先的。 图4三种不同材料的
5、阻抗和频率的关系 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。 具有附件的E形磁芯比环形磁芯贵,但组装成一个整体只需较小的代价。绕制E形磁芯的骨架相对便宜。为了分隔两个绕组可购到有分隔板的骨架并可安装在PC板上。 E形磁芯有更多的泄漏电感,在共模滤波器中对于不同的滤波是有用的。E形磁芯为了增加泄漏电感可以豁开缝隙
6、,以便吸收有害的共模和差模噪声。 1.3、磁芯的选择 下面给出环形磁芯的设计步骤,单层共模电感见图5。为了尽量减小绕组电容和防止由于不对称绕组引起的磁芯饱和,单层设计是经常应用的。步骤中假设两个相反的绕组之间的最小自由空间为30度。 图5单层共模电感的结构 对于共模电感所需的基本参数是电流(I)、阻抗(ZS)、和频率(f)。电流决定导线的尺寸。一个保守的400A/cm2电流密度不会在导线上产生有效的热量。而一个过分的800A/cm2电流密度会引起导线发热,这两个等级可用选
7、择图表表示。 在所给频率上,规定一个最小的电感阻抗是正常的。这个频率通常足够低并假设感抗XS能提供图2所示的阻抗。随后电感可计算为:(2用已知的电感和电流乘积LI基础上的图6和图7能用于选择磁芯的尺寸,这里L是电感(mH和I是电流(A)。建立在电流密度(Cd)400或800 A/cm2基础上的导线尺寸(AWG)可用下式计算: 匝数可由磁芯的AL值决如下1.4、设计举例 在10KHz阻抗为100时,电流为3A,由式(1)计算得LS=1.59mH;用800 A/cm2电流密度时,LI乘积为4.77,为了选择材料
8、可从图7查得磁芯尺寸。在此例,选择W材料直至1MHz可以给出高的阻抗,见图4。图7给出磁芯材料为W-41809-TC。由表1可查得磁芯尺寸和AL值。用AL=12200 mH /1000匝,式(3)给出N=12匝每边。用800 A/cm2时, 式(2)给出AWG=21。表1环形磁芯尺寸及其AL值二、整流电感设计 典型的稳压器电路包含三个部分:晶体开关管、二极箝位管、和LC滤波器。一个不稳压的直流电压加到通常工作在150KHz频率的晶体开关管。当开关处在ON状态时,输入电压Ein加到LC滤波器,结果导致通过电感的电流增大;当开关处在OFF状态时,用
9、储存在电感和电容内的过剩能量来保持输出功率。通过调整ON状态时的晶体开关管的导通时间ton和用来自输出端的反馈系统来获得稳压。结果稳定的直流输出电压可表示为: Eout=Eintonf (4 2.1、组件选择 开关系统包含晶体管和来自稳压器输出的反馈。晶体管的选择包含两个因素:(1)电压等级需大于最大的输入电压(2)为了保证有效地工作,截止频率特性必须高于实际的开关频率。反馈电路通常包括运放和比较器。对于二极箝位管的要求和晶体管的选择相同。如果已知:(1)最大和最小的输入电压(2)要求的输出(3)最大允许的纹波电压(4)
10、最大和最小的负载电流(5)想要的开关频率,那幺就可获得电感和电容的值。LC滤波器的设计就容易完成。首先晶体管的截止时间toff可计算为: toff=(1- Eout/Ein max)/f (5 当Ein减至它的最小值 fmin=(1- Eout/Ein max/ toff (6 用这些值,所需的电感和电容可以算得: 通过电感所允许的纹波峰-峰电流(i)可由下式给出: i=2IO min (7 电感可
11、用下式计算: L= Eouttoff/i (8) 对于i的计算值是有点任意,不过对于电感可以调整以获得实际值。 最小的电容可由下式给出: C=i/8f mineO (9) 最后,电容最大的等效串联电阻ESR是: ESR max =eO/i (10) 2.2、电感设计 在高频下铁氧体E形和罐形磁芯能提供成本降低和低磁芯损耗的优点。对于开关稳压器,F和P
12、材料被推荐是因为他们的温度和直流偏置特性。为避免饱和,可采用增加铁氧体型材气隙的办法使磁芯有效地使用。 对于开关稳压器的应用,这些磁芯的选择步骤能简化电感的设计。假设绕组系数50和导线载流容量为500园周面积(Circular Mils)/安培,我们能决定最小的磁芯尺寸。 设计应用的两个仅有参数必须知道: 电感需要用的直流偏置。 用等式(2)、(3)计算晶体开关管的截止时间和最小开关频率fmin toff=(1-5/35)/20,000=4.3×10
13、-5S tmin=(1-5/25)/4.3×10-5=18,700Hz 用等式(4)让最大纹波电流i通过电感 i=2(1)=2A 用等式(5)计算L L=5(4.3×10-5)/2=0.107mH 用等式(6)、(7)计算C和ESR max C=2/8(18700(0.5=26.7F ESR max =0.5/2=0.25 产品的LI2 LI2=(0.107(82=6.9mJ 由于有许多铁氧体型材可以购到,所以可以有不同的选择,若最大AL没有被超过,那幺与
14、任何磁芯尺寸相交的LI2值座标都能应用。 以下LI2值座标的选择是: (a)45224 EC 52 磁芯 AL315 (b)45015 E 磁芯 AL250 (c 44229 实芯磁芯 AL315 (d)43622 罐形磁芯 AL400 (e)43230 PQ磁芯 AL250 给定AL,对要求电感所需的匝数 AL 匝数 250 21 315 19 400 17 用14导线和 (7)磁芯气隙的应用
15、0; 直流偏置数据(e和H的关系曲线)的有关曲线表示点的轨迹,这个轨迹相当于有效导磁率保持常数。由图9可见以安匝数表示的最大允许的直流偏置,没有使电感减小。超过这个范围电感迅速下降。 图9有效磁导率与磁场强度的关系 应用举例: 求解:多少安匝数能支持R-42213-A-315罐形磁芯不使电感值减小? 已知:由图查得最大允许的H=25奥斯特NImax=0.8×H× =62.4安匝 或用图的顶部座标安匝/厘米 H=20A-T/cm NImax= A-T/cm× =20×3.1
16、2=62.4安匝 其中:由图查得最大允许的H=25奥斯特NImax=0.8×H× =62.4安匝 或用图的顶部座标安匝/厘米 H=20A-T/cm NImax= A-T/cm× =20×3.12=62.4安匝 以上译自(美)MAGNETICS公司铁氧体磁芯手册 3.1、磁材简介 铁镍钼(Molybdenum Permalloy)、铁镍50(Hi-Flux和铁硅铝(Super-MSS)功率磁芯可用磁导线绕制成变压器或电感。对所给能量储存(电感和电流)或变换(电
17、压和电流)值所允许的能量消耗,磁芯材料和尺寸的选择指导(在这里将会给出)。能量消耗通常规定在最大上升温度期间内的最低效率或最低Q值(在电流的一个周期内,Q值是2p乘以峰值能量储存/能量消耗)当选择磁芯材料时应考虑以下问题: (1)铁镍钼(MPP)功率磁芯能提供最大Q值和最低磁芯损耗。就温度和交流磁通而论是最稳定的磁芯。它有最宽广地磁导率范围和对于开关类电源的直流输出电感是非常珍贵的材料。它可用于MHz频率范围。对于高精密的音频调谐电路、高Q滤波器、负载线圈、RFI滤波器、和其他精密电感的应用是极好的选择。 (2)铁镍50(Hi-Flux)是一个50镍50铁间隔分布的功率
18、磁芯,它有15000以上高斯的饱和磁通密度和重要的磁芯损耗要比铁粉芯功率磁芯更低。对于开关稳压电源、在线噪声滤波器和反激变压器的应用,这些磁芯是理想的。和它呈现的总价值一样,当应用于高直流时,磁芯还能提供一个减小尺寸的电感。 (3)铁硅铝(Super-MSS)是一个改进的铝硅铁粉,它被Arnold技术独创性地发展了。由于提供非常低的损耗所以计划去替代铁粉芯,以及有比MPP更高的储存容量。在开关类电源中的能量储存和滤波电感的应用铁硅铝磁芯是个极好的选择。在所用的功率频率上,铁硅铝的低损耗特性能尽量减少温度的上升,它低于类似尺寸的铁粉芯功率磁芯。与类似磁导率和尺寸的铁粉芯功率磁芯相比硅
19、铝的直流偏置特性也极好。 为了参考,解释某些基本电磁术语和定义用于设计磁功率磁芯的关系,随后是对于变压器和电感器设计必不可少的材料特性,采用图形显示它的典型值。对于铁镍钼(MPP)功率磁芯在手册的最后部分包含具体的磁芯尺寸和Q值数据。 3.2、测量单位 由于历史的原因,在此手册中采用了CGS制单位,国际制(SI)和CGS制之间的转换可简化于下表2: 表2单位转换表 在CGS制自由空间磁导率的幅值为1且无量纲。在SI制自由空间磁导率的幅值为4×10-7
20、亨/米 3.3、电感 对于每一个磁芯电感(L)可用所列的电感系数(AL)计算: AL:对1000匝的电感系数 mH N:匝数 所以:这里 这里L是nH 电感也可由相对磁导率确定,磁芯的有效参数见图 10: Ae:有效磁芯面积 cm2 :有效磁路长度 cm :相对磁导率(无量纲) 对于环形功率磁芯,有效面积和磁芯截面积相同。 根据定义和安培定理,有效磁路长度是线圈的安匝数(NI)和从外径到外径穿过磁芯面积的平均磁场
21、强度之比。有效磁路长度可用安培定理和平均磁场强度给出的公式计算:O.D. :磁芯外径 I.D. :磁芯内径 电感系数是用单层密绕线圈测量的。磁通密度和测试频率保持与实际一样低,通常低于40高斯和10KHz或更低。对于各种磁导率和材料,能用正常磁导率对磁通密度关系和典型磁导率对频率关系的图形来解释低电平测试的条件。 3.4、磁导率 对于每一个磁芯尺寸的电感系数是建立在相对磁导率的增量上的。在没有直流偏置和低磁通密度时,正常磁导率和增量磁导率是一样的。增量磁导率随直流偏置一起
22、减小的情况以及“增量磁导率对直流偏置”的曲线如图11所示。由“增量磁导率对直流偏置” 曲线看到正常磁导率如同峰值磁导率B。许多设计过程包括选择峰值工作磁通密度去帮助决定磁芯的尺寸。磁材的饱和磁通密度限制了峰值工作磁通密度或被磁材的损耗所限制。在选择磁材、工作磁通密度和决定磁芯的尺寸之后,法拉第定理(下面讨论)用于计算匝数N。最后选择磁导率以满足电感的需要。L=电感 nH =有效磁路长度 cm Ae=有效磁芯面积 cm2 图11正常和增量磁导率 宽范值的磁导率经常能满足不同的电感需要。 安培定理(也在下面讨论)所给的峰值磁化强度H,是建立在匝数、峰值磁化电流(电感总电流和变压器原方的空载电流)和磁芯磁路长度的基础上的。如图11见到那样,在设计过程开始选择磁导率时,要设置与峰值磁通密度值相应的直流磁磁化强度H。对于铁镍钼(MPP),对于所给的磁磁化强度H,下面图12的选择曲线将给出产生最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论