




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、)。方差分析主要有三种模型:即固定效应模型(fixed effects model),随机 效应模型( random effects model ),混合效应模型( mixed effects model 所谓的固定、随机、混合,主要是针对分组变量而言的。固定效应模型, 表示你打算比较的就是你现在选中的这几组。 例如,我想比 较3种药物的疗效, 我的目的就是为了比较这三种药的差别, 不想往外推广。 这 三种药不是从很多种药中抽样出来的, 不想推广到其他的药物, 结论仅限于这三 种药。“固定”的含义正在于此,这三种药是固定的,不是随机选择的。随机效应模型, 表示你打算比较的不仅是你的设计中的这几
2、组, 而是想通过 对这几组的比较, 推广到他们所能代表的总体中去。 例如, 你想知道是否名牌大 学的就业率高于普通大学,你选择了北大、清华、北京工商大学、北京科技大学 4所学校进行比较,你的目的不是为了比较这 4 所学校之间的就业率差异,而是 为了说明他们所代表的名牌和普通大学之间的差异。你的结论不会仅限于这4所大学,而是要推广到名牌和普通这样的一个更广泛的范围。 “随机”的含义就 在于此,这 4 所学校是从名牌和普通大学中随机挑选出来的。混合效应模型就比较好理解了,就是既有固定的因素,也有随机的因素。 一般来说, 只有固定效应模型, 才有必要进行两两比较, 随机效应模型没有 必要进行两两比较
3、,因为研究的目的不是为了比较随机选中的这些组别。固定效应和随机效应的选择是大家做面板数据常常要遇到的问题, 一个常见 的方法是做huasman检验,即先估计一个随机效应,然后做检验,如果拒绝零假 设,则可以使用固定效应,反之如果接受零假设,则使用随机效应。但这种方法 往往得到事与愿违的结果。 另一个想法是在建立模型前根据数据性质确定使用那 种模型,比如数据是从总体中抽样得到的, 则可以使用随机效应,比如从N个家 庭中抽出了 M个样本,则由于存在随机抽样,则建议使用随机效应,反之如果数 据是总体数据,比如31个省市的Gdp则不存在随机抽样问题,可以使用固定 效应。同时,从估计自由度角度看,由于固
4、定效应模型要估计每个截面的参数, 因此随机效应比固定效应有较大的自由度 .固定效应模型固定效应模型( fixed effects model )的应用前提是假定全部研究结 果的方向与效应大小基本相同, 即各独立研究的结果趋于一致, 一致性检验差异 无显著性。因此固定效应模型适用于各独立研究间无差异,或差异较小的研究。固定效应模型是指实验结果只想比较每一自变项之特定类目或类别间 的差异及其与其他自变项之特定类目或类别间交互作用效果, 而不想依此推论到 同一自变项未包含在内的其他类目或类别的实验设计。 例如:研究者想知道教师 的认知类型在不同教学方法情境中, 对儿童学习数学的效果有何不同, 其中教
5、师 和学生的认知类型, 均指场地依赖型和场地独立型, 而不同的教学方法, 则指启 发式、讲演式、编序式。当实验结束时,研究者仅就两种类型间的交互作用效果 及类型间的差异进行说明, 而未推论到其他认知类型, 或第四种教学方法。 象此 种实验研究模式, 即称为固定效果模式。 与本词相对者是随机效应模型 ( random effect model )、混合效应模型( mixed effect model )。随机效应模型 random effects models随机效应模型 (random effects models) 是经典的线性模型的一种推广,就是把原来(固定)的回归系数看作是随机变量, 一
6、般都是假设是来自正态分布。 如果模型里一部分系数是随机的,另外一些是固定的,一般就叫做混合模型 ( mixed models )。虽然定义很简单, 对线性混合模型的研究与应用也已经比较成熟了, 但 是如果从不同的侧面来看, 可以把很多的统计思想方法综合联系起来。 概括地来 说,这个模型是频率派和贝叶斯模型的结合, 是经典的参数统计到高维数据分析 的先驱,是拟合具有一定相关结构的观测的典型工具。言,随机效应最直观的用处就是把固定效应推广到随机效应。 注意,这时随 机效应是一个群体概念,代表了一个分布的信息 or 特征,而对固定效应而 我们所做的推断仅限于那几个固定的(未知的)参数。例如,如果要研
7、究一些水 稻的品种是否与产量有影响, 如果用于分析的品种是从一个很大的品种集合里随 机选取的,那么这时用随机效应模型分析就可以推断所有品种构成的整体的一些 信息。这里,就体现了经典的频率派的思想 - 任何样本都来源于一个无限的群体 (population) 。同时,引入随机效应就可以使个体观测之间就有一定的相关性, 所以就 可以用来拟合非独立观测的数据。 经典的就有重复观测的数据, 多时间点的记录 等等,很多时候就叫做纵向数据 (longitudinal data) ,已经成为很大的一个统 计分支。上述两点基本上属于频率派,分析的工具也很经典,像极大似然估计, 似然比检验, 大样本的渐近性等。
8、 但是,应该注意到把固定的参数看做是随机变 量,可是贝叶斯学派的观念。当然,mixed models不能算是完全的贝叶斯模型, 因为贝叶斯学派要把所有的未知的参数都看作是随机的。 所以有人把它看做是半 贝叶斯的 or 经验贝叶斯的。 在这个模型上, 我们可以看到两个学派很好的共存 与交流,在现代的统计方法里两种学派互相结合的例子也越来越多。众所周知,随机效应有压缩 (shrinkage) 的功能, 而且可以使模型的自 由度(df)变小。这个简单的结果,对现在的高维数据分析的发展起到了至关重 要的作用。事实上,随机效应模型就是一个带惩罚 (penalty) 的一个线性模型, 有引入正态随机效应就
9、等价于增加的一个二次惩罚。有趣的是,著名的岭回归 (ridge regression) 就是一个二次惩罚,它的提出解决了当设计矩阵不满秩时 最小二乘估计(LSE无法计算以及提高了预测能力。于是,引入随机效应或者 二次惩罚就可以处理当参数个数 p 大于观测个数 n 的情形,这是在分析高维数 据时必须面对的问题。当然,二次惩罚还有一个特性,如:计算简便,能选择相 关的 predictors ,对前面的几个主成分压缩程度较小等。根据面板数据的特性, 在回归模型的设定的有效性问题上, 我们需要检验混 合估计模型、固定效应模型(Fixed-Effect Model)以及随机效应模型 (Random-Ef
10、fect Model)的有效性1,其中固定效应又包括个体固定效应和时 间固定效应 (如果同时具备个体固定效应和时间固定效应, 则称之为双向固定效 应)。对于混合估计模型和固定效应模型,我们可以使用F检验来判别其有效性; 对于混合估计模型和随机效应模型,通常可以用LM检验判别其有效性;对于固定效应模型和随机效应模型,通常用Hausmar检验判断其适用性。有关模型设定 和检验的细节可以参考 Baltagi ( 2005)所以,你需要分别检验是否加入时间固定效应、 是否需要加入个体固定效应。 1 简言之,混合估计模型就是假定所有公司年度都具有相同的截距项; 固 定效应模型假定截距项随公司和年度而变;
11、 随机效应模型不但假定截距项随公司和年度而变,而且假定这些不同的截距项和其它解释变量不相关。 更为具体的模 型设定问题可以参见李子奈、 叶阿忠(2000), Wooldridge (2003),以及Baltagi(2005)。面板数据分析方法步骤步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的 平稳性。李子奈曾指出, 一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。这种情况称为虚假回归或伪回归(sp urious regression )。他认为
12、平稳的真正含义是:一个时间序列剔除了不变的均值(可 视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。因此单 位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平 稳性进行检验。而检验数据平稳性最常用的办法就是单位根检验。首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的 折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做 准备。单位根检验方法的文献综述:在非平稳的面板数据渐进过程中丄evin andLin(1993)很早就发现这些估计量的极限分布是高
13、斯分布,这些结果也被应用在 有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。后来经过 Levin et al. (2002) 的改进,提出了检验面板单位根的 LLC法。Levin et al. (2002)指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于 中等维度(时间序列介于25250之间,截面数介于10250之间)的面板单位 根检验。Im et al. (1997)还提出了检验面板单位根的IPS法,但Breitung(2000) 发现IPS法对限定性趋势 的设定极为敏感,并提出了面板单位根检 验的 Breitung 法。Maddala and Wu(1999)
14、又提出了 ADF-Fisher 和 PP-Fisher 面板单 位根检验方法。由上述综述可知,可以使用 LLCIPS、Breintung、ADF-Fisher 和 PP-Fisher5 种方法进行面板单位根检验。里,量、其中 LLC-T、BR-T、IPS-W、ADF-FCS PP-FCS、H-Z 分别指 Levin, Lin & Chut* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF-Fisher Chi-square 统计量、PP-Fisher Chi-square 统计量、Hadri Z 统计量,并且 Lev in, Lin
15、 & Chu t*统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm P esara n & Shi n W 统计量、ADF- Fisher Chi-square统计量、PP-FisherChi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。有时,为了方便,只采用两种面板数据单位根检验方法, 即相同根单位根检 验LLC (Levin-Lin-Chu )检验和不同根单位根检验 Fisher-ADF检验(注:对普 通序列(非面板序列)的单位根检验方法则常用 ADF检验),如果在两种检验中 均拒绝存在单
16、位根的原假设则我们说此序列是平稳的,反之则不平稳。如果我们以T (trend )代表序列含趋势项,以I (intercept )代表序列含 截距项,T&I代表两项都含,N (none)代表两项都不含,那么我们可以基于前 面时序图得出的结论,在单位根检验中选择相应检验模式。但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。具体操作可以参照李子奈的说法:ADF佥验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不 含的模型。并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模
17、型的检验结果拒绝了零假设, 就可 认为时间序列是平稳的。此外,单位根检验一般是先从水平(level )序列开始检验起,如果存在单 位根,则对该序列进行一阶差分后继续检验, 若仍存在单位根,则进行二阶甚至 高阶差分后检验,直至序列平稳为止。我们记1(0)为零阶单整,1(1)为一阶单整,依次类推,I(N)为N阶单整。步骤二:协整检验或模型修正情况一:如果基于单位根检验的结果发现变量之间是同阶单整的, 那么我们 可以进行协整检验。协整检验是考察变量间长期均衡关系的方法。 所谓的协整是 指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。此时我 们称这些变量序列间有协整关系存在。因此协整的
18、要求或前提是同阶单整。但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个, 被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数 高于被解释变量的单整阶数。如果只含有两个解释变量,则两个变量的单整阶数 应该相同。也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验, 必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也 不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。而相对处 于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响, 所以
19、如 果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶, 此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广 的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系, 并且利用静态面板回归的残差来构建统计量。(2)Pedron(1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验 方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。 (3)Larsson et al(2001)发展了
20、基于 Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。我们主要采用的是 Pedroni、Kao Johansen的方法。通过了协整检验,说明变量之间存在着长期稳定的均衡关系, 其方程回归残 差是平稳的。因此可以在此基础上直接对原方程进行回归, 此时的回归结果是较 精确的。这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰 因果检验的,不过此时可以先对数据进行处理。引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其
21、他处理得到同阶单整 序列,并且要看它们此时有无经济意义。 ” 下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的, 即是通过概率或者分布函数的角度体现出来的: 在所有其它事件的发生情况固定 不变的条件下,如果一个事件X的发生与不发生对于另一个事件 丫的发生的概率 (如果通过事件定义了随机变量那么也可以说分布函数) 有影响,并且这两个事 件在时间上又有先后顺序(A前B后),那么我们便可以说X是丫的原因。考虑 最简单的形式,Gran ger检验是运用F-统计量来检验X的滞后值是否显著影响丫 (在统计的意义下,且已经综合考虑了 丫的滞后值;如果影响不显著,那么称 X 不是丫的“ Gra
22、n ger原因”(Granger cause);如果影响显著,那么称 X是丫的 “Granger原因”。同样,这也可以用于检验 丫是X的“原因”,检验丫的滞后值 是否影响X (已经考虑了 X的滞后对X自身的影响)。Eviews好像没有在P00窗口中提供 Granger causality test ,而只有unit root test 和 cointegration test 。说明 Eviews 是无法对面板数据序列做格兰 杰检验的,格兰杰检验只能针对序列组做。也就是说格兰杰因果检验在 Eviews 中是针对普通的序列对 (pairwise) 而言的。你如果想对面板数据中的某些合成序 列做因
23、果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/MakeGroup),再来试试。情况二:如果如果基于单位根检验的结果发现变量之间是非同阶单整的, 即 面板数据中有些序列平稳而有些序列不平稳, 此时不能进行协整检验与直接对原 序列进行回归。 但此时也不要着急, 我们可以在保持变量经济意义的前提下, 对 我们前面提出的模型进行修正, 以消除数据不平稳对回归造成的不利影响。 如差 分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数 据。此时的研究转向新的模型, 但要保证模型具有经济意义。 因此一般不要对原 序列进行二阶差分, 因为对变动数据或增长率数据再进行差
24、分, 我们不好对其冠 以经济解释。难道你称其为变动率的变动率?步骤三:面板模型的选择与回归 面板数据模型的选择通常有三种形式:一种是混合估计模型(Pooled Regression Model)。如果从时间上看,不同 个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异, 那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS估计参数。一种是固定效应模型( Fixed Effects Regression Model )。如果对于不同的截面 或不同的时间序列, 模型的截距不同, 则可以采用在模型中添加虚拟变量的方法 估计回归参数。一种是随机效应模型( RandomEfect
25、s Regression Model)。如 果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效 应,并且这两个随机误差项都服从正态分布, 则固定效应模型就变成了随机效应 模型。在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型 还是固定效应模型,然后用Hausmar检验确定应该建立随机效应模型还是固定效 应模型。检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归: 在回归的时候,权数可以选择按截面加权( cross-section weights )的方 式,对于横截面个数大于时序个数的情况更应如此, 表示允许不同的截面存在异 方差现象。估计方法采用
26、 PCSE( Panel Corrected Standard Errors ,面板校正标准误)方法。Beck和Katz(1995)引入的PCSE古计方法是面板数据模型估计方 法的一个创新,可以有效的处理复杂的面板误差结构,如同步相关,异方差,序 列相关等,在样本量不够大时尤为有用。固定效应模型分为三种 :个体固定效应模型、 时刻固定效应模型和个体时刻 固定效应模型)。如果我们是对个体固定,则应选择个体固定效用模型。但是, 我们还需作个体固定效应模型和混合估计模型的选择。所以,就要作 F 值检验。相对于混合估计模型来说,是否有必要建立个体固定效应模型可以通过 F 检验来完成。SSErH0:对于
27、不同横截面模型截距项相同(建立混合估计模型)H1:对于不同横截面模型的截距项不同(建立时刻固定效应模型)。SSEu F统计量定义为:F=( SSEr - SSEu)/(T+k 2)/ SSEu/(NT-T-k)其中,SSEr, SSEl分别表示约束模型(混合估计模型的)和非约束模型(个 体固定效应模型的)的残差平方和( Sumsquared resid )。非约束模型比约束模 型多了 T- 1个被估参数。需要指出的是:当模型中含有 k个解释变量时,F统 计量的分母自由度是NT-T- k。通过对F统计量我们将可选择准确、最佳的估计 模型。在作回归时也是四步:第一步,先作混合效应模型: 在 cross-sectio
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度全新转让合同:网络直播平台运营权出让协议
- 2025年度汽车租赁代驾与网约车平台合作协议
- 二零二五年度亲友间代持房产购房协议
- 二零二五年度施工安全责任协议书(含风险评估)
- 二零二五年度实习生实习期间企业文化建设合作合同
- 2025年度购房合同解除及物业管理协议
- 妇幼保健员职业定位试题及答案
- 二零二五年度征收国有土地房屋拆迁安置合同
- 二零二五年度城市中心区三方合租公寓租赁协议
- 二零二五年度土地承包经营权权属变更合同
- DeepSeek+DeepResearch-让科研像聊天一样简单(内含AI学术工具公测版)
- 宋代农书研究出版对宋代农业研究的价值4篇
- 5.2《稻》教案-【中职专用】高二语文同步教学(高教版2023·拓展模块下册)
- 2025年超长期特别国债申报工作及成功案例
- 电梯困人培训课件
- 熔化焊接与热切割作业题库题库(1455道)
- 2025年中国中煤华东分公司招聘笔试参考题库含答案解析
- 铁路运输碳排放分析-洞察分析
- 第16课数据管理与编码(教案)四年级全一册信息技术人教版
- HPV分型检测介绍课件
- 超全自考英语二词汇表-含音标4500-个单词
评论
0/150
提交评论