一次函数经典例题大全(共19页)_第1页
一次函数经典例题大全(共19页)_第2页
一次函数经典例题大全(共19页)_第3页
一次函数经典例题大全(共19页)_第4页
一次函数经典例题大全(共19页)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上1. 定义型例1. 已知函数是一次函数,求其解析式。解:由一次函数定义知, ,故一次函数的为y=-6x+3。注意:利用定义求一次函数y=kx+b解析式时,要保证k0。如本例中应保证m-30。二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。解: 一次函数 的图像过点(2, -1), ,即k=1。故这个一次函数的解析式为y=x-3。变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_。

2、解:设一次函数解析式为y=kx+b,由题意得, 故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为_。解:设一次函数解析式为y=kx+b由图可知一次函数 的图像过点(1, 0)、(0, 2)有 故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为_。解析:两条直线; 。当k1=k2 ,b1b2时,直线y=kx+b与直线y=-2x平行, 。 又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2

3、个单位得到的图像解析式为_。解析:设为 y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行 直线y=kx+b在y轴上的截距为 b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为_。解:由题意得Q=20-0.2t ,即Q=-0.2t+20 故所求函数的为 Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。八. 面积型例8. 已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,则直线解析式为_。解:易

4、求得直线与x轴交点为,所以,所以|k|=2 ,即 故直线解析式为y=2x-4或y=-2x-4九. 对称型若直线与直线y=kx+b关于(1)x轴对称,则直线的解析式为y=-kx-b(2)y轴对称,则直线的解析式为y=-kx+b(3)直线y=x对称,则直线的解析式为(4)直线y=-x对称,则直线的解析式为(5)原点对称,则直线的解析式为y=kx-b例9. 若直线l与直线y=2x-1关于y轴对称,则直线l的解析式为_。解:由(2)得直线l的解析式为y=-2x-1十. 开放型例10. 已知函数的图像过点A(1, 4),B(2, 2)两点,请写出满足上述条件的两个不同的函数解析式,并简要说明解答过程。解

5、:(1)若经过A、B两点的函数图像是直线,由两点式易得y=-2x+6(2)由于A、B两点的横、纵坐标的积都等于4,所以经过A、B两点的函数图像还可以是双曲线,解析式为(3)其它(略)十一. 几何型例11. 如图,在平面直角坐标系中,A、B是x轴上的两点,以AO、BO为直径的半圆分别交AC、BC于E、F两点,若C点的坐标为(0, 3)。(1) 求图像过A、B、C三点的二次函数的,并求其对称轴;(2)求图像过点E、F的一次函数的解析式。 解:(1)由的知识易得点A(-33, 0)、B(3, 0),由可求得二次函数解析式为 ,对称轴是x=-3 (2)连结OE、OF,则,。过E、F分别作x、y轴的垂线

6、,垂足为M、N、P、G,易求得E 、F ,由待定系数法可求得一次函数解析式为十二. 方程型例12. 若方程x2+3x+1=0的两根分别为,求经过点P 和Q 的一次函数图像的解析式解:由根与系数的关系得点P(11, 3)、Q(-11, 11)设过点P、Q的一次函数的解析式为y=kx+b则有解得 故这个一次函数的解析式为十三. 综合型例13. 已知抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D在双曲线上,直线y=kx+c经过点D和点C(a, b)且使y随x的增大而减小,a、b满足方程组,求这条直线的解析式。解:由抛物线y=(9-m2)x2-2(m-3)x+3m的顶点D在双曲线上,可求得抛

7、物线的解析式为:y1=-7x2+14x-12,顶点D1(1, -5)及y2=-27x2+18x-18顶点D2 解方程组得, 即C1(-1, -4),C2(2, -1)由题意知C点就是C1(-1, -4),所以过C1、D1的直线是;过C1、D2的直线是函数问题1已知 ,则当k0时,y随x的增大而减小。解:根据正比例函数的定义和性质,得 k<0。函数问题2已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是( )A. x1>x2 B. x1<x2 C. x1=x2 D.无法确定解:根据题意,知k=3>

8、;0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。函数问题3一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0,从而b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A .函数问题4一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是

9、y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的.分析:此题由物理的问题转化为数学的问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的则可由最大总长最大伸长最大质量及实际的思路来处理.解:由题意设所求函数为y=kx+12,则13.5=3k+12 解之,k=0.5y与x的函数关系式为y=0.5x+12由题意,得:23=0.5x+12x=22 解之,x=22自变量x的取值范围是0x22函数问题5某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用120元外,每张还需成本4元,问这些光盘是到电脑公司

10、刻录,还是学校自己刻费用较省?此题要考虑X的范围解:设总费用为Y元,刻录X张,则电脑公司:Y1=8X 学校 :Y2=4X+120当X=30时,Y1=Y2 , 当X>30时,Y1>Y2 , 当X<30时,Y1<Y2函数问题6(1)y与x成正比例函数,当 y=5时,x=2.5,求这个正比例函数的解析式.(2)已知一次函数的图象经过A(1,2)和B(3,5)两点,求此一次函数的解析式.解:(1)设所求正比例函数的解析式为 y=kX , 把 y=5,x=2.5代入上式 得 ,5=2.5k,解之,得k=2 所求正比例函数的解析式为 y=2X (2)设所求一次函数的解析式为y=kx

11、+b此图象经过A(1,2)、B(3,5)两点,此两点的坐标必满足y=kx+b ,将x=-1 、y=2和x=3、y=-5 分别代入上式,得 2=-k+b,-5=3k+b 解得 k=-7/4,b=1/4此一次函数的解析式为y=-7x/4+1/4点评:(1) 不能化成.(2)所设定的解析式中有几个待定系数,就需根据已知条件列几个方程.函数问题7拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量t的取值范围,并且画出图象.分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.解: 函数关系式:Q=2

12、0-5t,其中t的取值范围:0t4。图象是以(0,20)和(4,0)为端点的一条线段(图象略)。点评:注意函数自变量的取值范围.该图象要根据自变量的取值范围而定,它是一条线段,而不是一条直线.函数问题8已知一次函数的图象经过点P(2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.解:设所求一次函数解析式为y=kx+b点P的坐标为(2,0) |OP|=2设函数图象与y轴交于点B(0,m) 根据题意,SPOB=3 |m|=3一次

13、函数的图象与y轴交于B1(0,3)或B2(0,3)将P(2,0)及B1(0,3);或P(2,0)及B2(0,3)的坐标代入y=kx+b中,得-2k+b=0,b=3; 或-2k+b=0,b=-3。解得 k=1.5,b=3;或k=-1.5,b=-3。所求一次函数的解析式为 y=1.5x+3或y=-1.5-3。点评:(1)本题用到分类讨论的数学思想方法.涉及过定点作直线和两条坐标轴相交的问题,一定要考虑到方向,是向哪个方向作.可结合图形直观地进行思考,防止丢掉一条直线.(2)涉及面积问题,选择直角三角形两条直角边乘积的一半,结果一定要得正值.【考点指要】一次函数的定义、图象和性质在中考说明中是C级知

14、识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.函数问题9如果一次函数y=kx+b中x的取值范围是-2x6,相应的函数值的范围是-11y9.求此函数的的解析式。分析:因为函数的增减性不明确,所以分(1)K0时,x-2,y11;X6,y9。(2)K0时,此时x-2,y9;X6,y11。【考点指要】此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大

15、;若k<0,则y随x的增大而减小。基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-x; (2)y=-; (3)y=-3-5x;(4)y=-5x2; (5)y=6x- (6)y=x(x-4)-x2.分析 本题主要考查对一次函数及正比例函数的概念的理解解:(1)(3)(5)(6)是一次函数,(l)(6)是正比例函数例2 当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?分析 某函数是一次函数,除应符合y=kx+b外,还要注意条件k0解:函数y=(m-2

16、)x+(m-4)是一次函数, m=-2. 当m=-2时,函数y=(m-2)x+(m-4)是一次函数小结 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0而某函数若是正比例函数,则还需添加一个条件:常数项为0基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式例3 一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长05cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量

17、x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数分析 (1)弹簧每挂1kg的物体后,伸长05cm,则挂xkg的物体后,弹簧的长度y为(l5+05x)cm,即y=15+05x(2)自变量x的取值范围就是使函数关系式有意义的x的值,即0x18(3)由y=15+05x可知,y是x的一次函数解:(l)y=15+05x(2)自变量x的取值范围是0x18(3)y是x的一次函数学生做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米时,则火车离库尔勒的距离s(千米)与行驶时间t(时)之间的函数关系式是 .老师评一评 研究本题可采用线段图示法,如

18、图1119所示火车从乌鲁木齐出发,t小时所走路程为58t千米,此时,距离库尔勒的距离为s千米,故有58t+s=600,所以,s=600-58t例4 某物体从上午7时至下午4时的温度M()是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 分析 本题给出了函数关系式,欲求函数值,但没有直接给出t的具体值从题中可以知道,t=0表示中午12时,t=1表示下午1时,则上午10时应表示成t=-2,当t=-2时,M=(-2)3-5×(-2)+100=102() 答案:102例5 已知y-3与x成正比例,且x=2时,y=7.(1

19、)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值分析 由y-3与x成正比例,则可设y-3=kx,由x=2,y=7,可求出k,则可以写出关系式解:(1)由于y-3与x成正比例,所以设y-3=kx把x=2,y=7代入y-3=kx中,得7-32k, k2y与x之间的函数关系式为y-3=2x,即y=2x+3(2)当x=4时,y=2×4+3=11(3)当y4时,4=2x+3,x=.学生做一做 已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是 .老师评一评 由y与x+1成正比例,可设y与x的函数关系式为y=k(x+1).再把x=5,y=1

20、2代入,求出k的值,即可得出y关于x的函数关系式设y关于x的函数关系式为y=k(x+1).当x=5时,y=12,12=(5+1)k,k=2y关于x的函数关系式为y=2x+2【注意】 y与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1x2时,y1y2,则m的取值范围是( )AmOBm0 CmDmM分析 本题考查正比例函数的图象和性质,因为当x1x2时,y1y2,说明y随x的增大而减小,所以1-2mO,m,故正确答案为D项学生做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元(

21、1)写出年产值y(万元)与年数x(年)之间的函数关系式;(2)画出函数的图象;(3)求5年后的产值老师评一评 (1)年产值y(万元)与年数x(年)之间的函数关系式为y=15+2x(2)画函数图象时要特别注意到该函数的自变量取值范围为x0,因此,函数y=15+2x的图象应为一条射线画函数y=12+5x的图象如图1121所示(3)当x=5时,y15+2×5=25(万元) 5年后的产值是25万元例7 已知一次函数y=kx+b的图象如图1122所示,求函数表达式分析 从图象上可以看出,它与x轴交于点(-1,0),与y轴交于点(0,-3),代入关系式中,求出k为即可解:由图象可知,图象经过点(

22、-1,0)和(0,-3)两点,代入到y=kx+b中,得 此函数的表达式为y=-3x-3.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式分析 图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可解:由题意可设所求函数表达式为y=2x+b,图象经过点(2,-1),-l=2×2+bb=-5,所求一次函数的表达式为y=2x-5.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题例8 已知y+a与x+b(a,

23、b为是常数)成正比例(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?分析 判断某函数是一次函数,只要符合y=kx+b(k,b中为常数,且k0)即可;判断某函数是正比例函数,只要符合y=kx(k为常数,且k0)即可解:(1)y是x的一次函数y+a与x+b是正比例函数,设y+a=k(x+b)(k为常数,且k0)整理得y=kx+(kb-a)k0,k,a,b为常数,y=kx+(kb-a)是一次函数(2) 当kb-a=0,即a=kb时,y是x的正比例函数例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费04元;“神州行”使用

24、者不交月租费,每通话1分,付话费06元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?分析 这是一道实际生活中的应用题,解题时必须对两种不同的收费方式仔细分析、比较、计算,方可得出正确结论解:(1)y1=50+04x(其中x0,且x是整数) y2=06x(其中x0,且x是整数)(2)两种通讯费用相同, y1=y2,即50+04x=06x x250一个月内通话250分时,两种通讯方式的费用相同(3)当y1=200时,有

25、200=50+04x,x=375(分) “全球通”可通话375分当y2=200时,有200=06x, x=333(分)“神州行”可通话333分 375333,选择“全球通”较合算例10 已知y+2与x成正比例,且x=-2时,y=0(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且SABP=4,求P点的坐标分析 由已知y+2与x成正比例,可设y+2=kx,把x=-2,y=0代入,可求出k,这样即可得到y与x之间的函数关系式,再根据函数

26、图象及其性质进行分析,点(m,6)在该函数的图象上,把x=m,y=6代入即可求出m的值解:(1)y+2与x成正比例,设y+2=kx(k是常数,且k0)当x=-2时,y=0 0+2k·(-2),k-1函数关系式为x+2=-x,即y=-x-2(2)列表;x0-2y-20描点、连线,图象如图所示(3)由函数图象可知,当x-2时,y0当x-2时,y0(4)点(m,6)在该函数的图象上, 6=-m-2, m-8(5)函数y=-x-2分别交x轴、y轴于A,B两点,A(-2,0),B(0,-2)SABP=·|AP|·|OA|=4, |BP|=.点P与点B的距离为4 又B点坐标为

27、(0,-2),且P在y轴负半轴上,P点坐标为(0,-6).例11 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?分析 函数图象经过某点,说明该点坐标适合方程;图象与y轴的交点在y轴上方,说明常数项bO;两函数图象平行,说明一次项系数相等;y随x的增大而减小,说明一次项系数小于0解:(1)图象经过原点,则它是正比例函数 k-2 当k=-3时,它的图象经过原点(2)该一次函数的图象经过点(0,-2).-2=-2k2+18, 且3-k0,

28、 k=±当k=±时,它的图象经过点(0,-2)(3)函数图象平行于直线y=-x, 3-k=-1, k4当k4时,它的图象平行于直线x=-x(4)随x的增大而减小, 3-kO k3当k3时,y随x的增大而减小例12 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上分析 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上解:设过A,B两点的直线的表达式为y=kx+b由题意可知,过A,B两点的直线的表达式为y=x-2 当x=4时,y=4-2=2点C(4,2)在直线y

29、=x-2上A(3,1), B(0,-2),C(4,2)在同一条直线上学生做一做 判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用例13 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快”乙生说:“直线y=-x与y=-x+6是互相平行的”你认为这两个同学的说法

30、正确吗?分析 (1)可先画出这两个函数的图象,从图象中发现,当x2时,6x2x+8,所以,y=6x的函数值先达到30(2)直线y=-x与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的解:这两位同学的说法都正确例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠”乙旅行社说:“所有人按全票价的6折优惠”已知全票价为240元(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠分析 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,

31、再通过比较,探究结论解:(1)甲旅行社的收费y甲(元)与学生人数x之间的函数关系式为y甲=240+×240x=240+120x.乙旅行社的收费y乙(元)与学生人数x之间的函数关系式为y乙=240×60×(x+1)=144x+144(2)当y甲=y乙时,有240+120x=144x+144,24x96,x=4 当x=4时,两家旅行社的收费相同,去哪家都可以当y甲y乙时,240+120x144x+144,24x96,x4 当x4时,去乙旅行社更优惠当y甲y乙时,有240+120x140x+144,24x96,x4 当x4时,去甲旅行社更优惠小结 此题的创新之处在于先通

32、过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法学生做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由老师评一评 先求出两种购买方案的付款y(元)与所购买的水果量x(千克)之

33、间的函数关系式,再通过比较,探索出结论(1)甲方案的付款y甲(元)与所购买的水果量x(千克)之间的函数关系式为y甲=9x(x3000);乙方案的付款y乙(元)与所购买的水果量x(千克)之间的函数关系式为y乙=8x+500O(x3000)(2)有两种解法:解法1:当y甲=y乙时,有9x=8x+5000, x=5000当x=5000时,两种方案付款一样,按哪种方案都可以当y甲y乙时,有9x8x+5000,x5000 又x3000,当3000x5000时,甲方案付款少,故采用甲方案当y甲y乙时,有9x8x+5000,x5000 当x500O时,乙方案付款少,故采用乙方案解法2:图象法,作出y甲=9x

34、和y乙=8x+5000的函数图象,如图1124所示,由图象可得:当购买量大于或等于3000千克且小于5000千克时,y甲y乙,即选择甲方案付款少;当购买量为5000千克时,y甲y乙即两种方案付款一样;当购买量大于5000千克时,y甲y乙,即选择乙方案付款最少【说明】 图象法是解决问题的重要方法,也是考查学生读图能力的有效途径.例15 一次函数y=kx+b的自变量x的取值范围是-3x6,相应函数值的取值范围是-5y-2,则这个函数的解析式为 .分析 本题分两种情况讨论:当k0时,y随x的增大而增大,则有:当x=-3,y=-5;当x=6时,y=-2,把它们代入y=kx+b中可得函数解析式为y=-x

35、-4当kO时则随x的增大而减小,则有:当x=-3时,y=-2;当x=6时,y=-5,把它们代入y=kxb中可得函数解析式为y=-x-3.函数解析式为y=x-4,或y=-x-3. 答案:y=x-4或y=-x-3.【注意】 本题充分体现了分类讨论思想,方程思想在一次函数中的应用,切忌考虑问题不全面.中考试题预测例1 某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动

36、员需要支付多少元?分析 设举办乒乓球比赛的费用y(元)与租用比赛场地等固定不变的费用b(元)和参加比赛的人数x(人)的函数关系式为y=kx+b(k0).把x=20,y=1600;x=30,y=2000代入函数关系式,求出k,b的值,进而求出y与x之间的函数关系式,当x=50时,求出y的值,再求得y÷50的值即可解:(1)设y1=b,y2=kx(k0,x0), y=kx+b又当x=20时,y=1600;当x=30时,y=2000,y与x之间的函数关系式为y=40x+800(x0).(2)当x=50时,y=40×50+800=2800(元)每名运动员需支付2800÷5

37、0=56(元答:每名运动员需支付56元例2 已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3(1)求这个函数的解析式。(2)在直角坐标系内画出这个函数的图象分析 求函数的解析式,需要两个点或两对x,y的值,把它们代入y=kx+b中,即可求出k在的值,也就求出这个函数的解析式,进而画出这个函数的图象解:(1)由题意可知 这个函数的解析式为x=-2x+1.(2)列表如下:x0y10描点、连线,如图1126所示即为y=-2x+1的图象例3 如图1127所示,大拇指与小拇指尽量张开时,两指尖的距离称为指距某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得的指距

38、与身高的一组数据指距d/cm20212223身高h/cm160169178187(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)(2)某人身高为196cm,一般情况下他的指距应是多少?分析 设h与d之间的函数关系式是h=kd+b(k0)当d20时,h=160;当d=21时,h=169把这两对d,h值代人h=kd+b得所以得出h与d之间的函数关系式,当h=196时,即可求出d解:(1)设h与d之间的函数关系式为h=kd+b(k0)由题中图表可知当d=2O时,h=16O;当d=21时,h=169. 把它们代入函数关系式,得h与d之间的函数关系式是h=9d-20(2)当h=196时

39、,有196=9d-20d24当某人的身高为196cm时,一般情况下他的指距是24cm例4 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米时,那汽车距成都的路程s(千米)与行驶时间t(时)的函数关系用图象(如图1128所示)表示应为( )分析 本题主要考查函数关系式的表达及函数图象的知识,由题意可知,汽车距成都的路程s(千米)与行驶时间t(时)的函数关系式是s=400-100t,其中自变量t的取值范围是0t4,所以有0s400,因此这个函数图象应为一条线段,故淘汰掉D又因为在S=400-100t中的k=-1000,s随t的增大而减小,所以正确答案应该是C小结 画函数图象时,要

40、注意自变量的取值范围,尤其是对实际问题例5 已知函数:(1)图象不经过第二象限;(2)图象经过点(2,-5).请你写出一个同时满足(1)和(2)的函数关系式: 分析 这是一个开放性试题,答案是不惟一的,因为点(2,-5)在第四象限,而图象又不经过第二象限,所以这个函数图象经过第一、三、四象限,只需在第一象限另外任意找到一点,就可以确定出函数的解析式设经过第一、二、四象限的直线解析式为y=kx+b(kO),另外的一点为(4,3),把这两个点代入解析式中即可求出k,b. y=4x-13. 答案:y4x-13【注意】 后面学习了反比例函数二次函数后可另行分析.例6 人在运动时的心跳速率通常和人的年龄

41、有关如果用a表示一个人的年龄,用b表示正常情况下这个人运动时所能承受的每分心跳的最高次数,另么b=08(220-a)(1)正常情况下,在运动时一个16岁的学生所能承受的每分心跳的最高次数是多少?(2)一个50岁的人运动10秒时心跳的次数为20次,他有危险吗?分析 (1)只需求出当a=16时b的值即可(2)求出当a=50时b的值,再用b和20×=120(次)相比较即可解:(1)当a=16时,b=08(220-16)1632(次)正常情况下,在运动时一个16岁的学生所能承受的每分心跳的最高次数是1632次(2)当a=50时,b=08(220-50)=08×170=136(次),

42、表示他最大能承受每分136次而20×=120136,所以他没有危险一个50岁的人运动10秒时心跳的次数为20次,他没有危险例7 某市的A县和B县春季育苗,急需化肥分别为90吨和60吨,该市的C县和D县分别储存化肥100吨和50吨,全部调配给A县和B县已知C,D两县运化肥到A,B两县的运费(元吨)如下表所示(1)设C县运到A县的化肥为x吨,求总运费W(元)与x(吨)的函数关系式,并写出自变量x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案分析 利用表格来分析C,D两县运到A,B两县的化肥情况如下表则总运费W(元)与x(吨)的函数关系式为W=35x+40(90-x)+30(

43、100-x)+4560-(100-x)=10x+4800自变量x的取值范围是40x90解:(1)由C县运往A县的化肥为x吨,则C县运往B县的化肥为(100-x)吨D县运往A县的化肥为(90-x)吨,D县运往B县的化肥为(x-40)吨由题意可知W35x+40(90-x)+30(100-x)+45(x-40)10x+4800自变量x的取值范围为40x90总运费W(元)与x(吨)之间的函数关系式为w1Ox+480O(40x9O)(2)100,W随x的增大而增大当x=40时,W最小值=10×40+4800=5200(元)运费最低时,x=40,90-x=50(吨),x-40=0(吨)当总运费最

44、低时,运送方案是:C县的100吨化肥40吨运往A县,60吨运往B县,D县的50吨化肥全部运往A县例8 2006年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降,图1129是某水库的蓄水量V(万米2)与干旱持续时间t(天)之问的关系图,请根据此图回答下列问题(1) 该水库原蓄水量为多少万米2?持续干旱10天后水库蓄水量为多少万米3?(2) 若水库存的蓄水量小于400万米3时,将发出严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报? (3)按此规律,持续干旱多少天时,水库将干涸?分析 由函数图象可知,水库的蓄水量V(万米2)与干旱时间t(天)之间的函数关系为一次函数,设一次函数的解析式是V=kt+b(k,b是常数,且k0).由图象求得这个函数解析式,进而求出本题(1)(2)(3)问即可解:设水库的蓄水量V(万米3)与干旱时间t(天)之间的函数关系式是V=kt+b(k,b是常数,且k=0)由图象可知,当t=10时,V=800;当t=30时,V=400把它们代入V=kt+b中,得V=-20t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论