版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上目录(1) 找规律观察是解决问题的根据。通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2根据相隔的每两个数的关系,找出规律,推断出所要填的数;3要善于从整体上把握数据之间的联系,从而很快找出规律;4数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。数列中的规律一、例题与方法指导例1:先找出下列数排列的规律,并根据规律在括号里填上适当的数。1,4,7,10,( ),16,19思路导航:在这列数中,相邻的两个数的差都是3,即每一个数加上
2、3都等于后面的数。根据这一规律,括号里应填的数为:10+3=13或163=13像上面按照一定的顺序排列的一串数叫做数列。例2:先找出下列数排列的规律,然后在括号里填上适当的数。 1,2,4,7,( ),16,22思路导航:在这列数中,前4个数每相邻的两个数的差依次是1,2,3。由此可以推算7比括号里的数少4,括号里应填:7+4=11。经验证,所填的数是正确的。应填的数为:7+4=11或16-5=11例3:先找出规律,然后在括号里填上适当的数。23,4,20,6,17,8,( ),( ),11,12思路导航:在这列数中,第一个数减去3的差是第三个数,第二个数加上2的和是第四个数,第三个数减去3的
3、差是第五个数,第四个数加上2的和是第六个数依此规律,8后面的一个数为:17-3=14,11前面的数为:8+2=102、 巩固训练1.先找出下列各列数的排列规律,然后在括号里填上适当的数。(1)2,6,10,14,( ),22,26(2)3,6,9,12,( ),18,21(3)33,28,23,( ),13,( ),3(4)55,49,43,( ),31,( ),19(5)3,6,12,( ),48,( ),192(6)2,6,18,( ),162,( )(7)128,64,32,( ),8,( ),2(8)19,3,17,3,15,3,( ),( ),11,32.先找出下列数排列的规律,然后
4、在括号里填上适当的数。(1)10,11,13,16,20,( ),31(2)1,4,9,16,25,( ),49,64(3)3,2,5,2,7,2,( ),( ),11,2(4)53,44,36,29,( ),18,( ),11,9,8(5)81,64,49,36,( ),16,( ),4,1,0(6)28,1,26,1,24,1,( ),( ),20,1(7)30,2,26,2,22,2,( ),( ),14,2(8)1,6,4,8,7,10,( ),( ),13,143、 拓展提升先找出规律,然后在括号里填上适当的数。(1)1,6,5,10,9,14,13,( ),( )(2)13,2,1
5、5,4,17,6,( ),( )(3)3,29,4,28,6,26,9,23,( ),( ),18,14(4)21,2,19,5,17,8,( ),( )(5)32,20,29,18,26,16,( ),( ),20,12(6)2,9,6,10,18,11,54,( ),( ),13,486(7)1,5,2,8,4,11,8,14,( ),( )(8)320,1,160,3,80,9,40,27,( ),( )图形中的规律我们通常会碰到一些图形,它们在某一方面,比如颜色,形状,大小,结构,位置或繁难等有些共同的特征或变化规律,你能通过观察找规律,并根据规律推断出结果吗?一、例题与方法指导例1.
6、下面哪个图形和其他几个不一样,你能找出来吗?思路导航:题中几个图形的共同特征是:先连接各边中点,组成一个复合图形。所不同的是,B图形是一个三角形,而其他几个图形都是四边形,这样,只有B与其他几个不一样。例2.找出下组图形中不同的项。思路导航:题中只有D图形不是由A翻转过来的,其他图形都是在同一个平面内通过把A图形旋转而得到的。故不同的选项应该为D例3.在下面图形中找出一个与众不同的.(1) (2) (3) (4) (5)思路导航:很容易看出题目图中(1)逆时针旋转就是(4),但是这样一来,(2)、(3)、(5)都与它们不同了.题目上要求找出一个.所以放弃这种想法.图(2)顺时针旋转,且大、小两
7、个矩形颜色互换一下就得到(5).而图(1)与(3)的变化规律也是这样:顺时针旋转,大小两部分颜色互换.因此(1)与(3)配对,(2)与(5)配对.解:与众不同的是题目图中的(4).例4.依照下面图中所给图形的变化规律,在空格中填图.思路导航:我们分花盆、花茎、花叶、花朵四个部分逐步观察.(1)花盆:花盆的形状每一行都是由同样的三种形状组成,所以第三行所缺的形状便是应填的图案中的花盆形状;花盆的颜色在同一行中都是由黑、白、灰(画有斜线)三色组成,图中第三行已有白、灰二色,所以应填的花盆为黑色(如下图(1);(2)花茎:如同上面一样的分析.花茎的形状为鱼钩状,方向向右(如下图(2);(3)花叶:花
8、叶数量为两朵,方向是向左、右平展(如下图(3);(4)花朵:形状为圆形(如下图(4). (1) (2) (3) (4) 解:依照所给图形的变化规律,空格中应填的图形如图(4).2、 巩固训练1. 按顺序观察图51与图52中图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?2.请观察右图中已有的几个图形,并按规律填出空白处的图形。3. 按顺序观察下图中图形的变化规律,并在“?”处填上合适的图形.4.下图中的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(2) 数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。谜底你还记得吗?记
9、不得也没关系,想想“空中”指什么?“天”。这个地名第1个字可能是天。“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。这样谜底就出来了:天津。算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用、等图形符号或字母表示。文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。文字算式谜也是最难
10、的一种算式谜。在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。横式字谜1、 例题与方法指导例1 ,8,97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。那么所填的3个数字之和是多少?思路导航:150*3-8-97-5=340所以3个数之和为3+4+5=12。例2 在下列算式的中填上适当的数字,使得等式成立:(1)64÷56=0,(2)78÷37=1,(3)33÷2=17,(4)8÷58=6。思路导航:(1) 6104/56=109 (2)7548/37=204(3) 3393/29=117(4)8468/58
11、=146例3 在算式40796÷=9998的各个方框内填入适当的数字后,就可以使其成为正确的等式。求其中的除数。思路导航:40796/102=399.98。例4 我学数学乐×我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。如果“乐”代表9,那么“我数学”代表的三位数是多少? 思路导航:学=1,我=8,数=6 ,81619*81619=例5 ÷(÷÷)=24在式中的4个方框内填入4个不同的一位数,使左边的数比右边的数小,并且等式成立。思路导航:这样,我们可以先用字母代替数字,原等式写成:a/(b/c
12、/d)=a/(b/c*d)=a*c*d/b,(a<b<c<d)当a=1时,有6*8/2=24,8*9/3=24;当a=2时,有4*9/3=12,6*8/4=12,8*9/6=12;所以,满足要求的等式有:1÷(2÷6÷8)=24,1÷(3÷8÷9)=24,2÷(3÷4÷9)=24,2÷(4÷6÷8)=24,2÷(6÷8÷9)=24。例6 ×=5; 12+=,把1至9这9个数字分别填入上面两个算式的各个方框中,使等式成立
13、,这里有3个数字已经填好。2、 训练巩固1. 迎迎×春春=杯迎迎杯,数数×学学=数赛赛数,春春×春春=迎迎赛赛在上面的3个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。如果这3个等式都成立,那么,“迎+春+杯+数+学+赛”等于多少?2. 迎+春×春=迎春,(迎+杯)×(迎+杯)=迎杯在上面的两个横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。那么“迎+春+杯”等于多少?3、 拓展提升1.在下列各式的中分别填入相同的两位数:(1)5×=2;(2)6×3。2. 将39中的数填入下列各式,使算式成立,要求
14、各式中无重复的数字:(1)÷=÷;(2)÷÷。3.在下列各式的中填入合适的数字:(1)448÷=;(2)2822÷=;(3)13×= 46。4. 在下列各式的中填入合适的数:(1) ÷32831;(2)573÷3229;(3)4837÷7427。竖式字谜1、 例题与方法指导例1 在图4-1所示的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字那么“喜欢”这两个汉字所代表的两位数是多少?分析: 首先看个位,可以得到“欢”是0或5,但是“欢”是第二个数的十位,所以“欢”不能是0,只能是5。
15、再看十位,“欢”是5,加上个位有进位1,那么,加起来后得到的“人”就应该是偶数,因为结果的百位也是“人”,所以“人”只能是2;由此可知,“喜”等于8。 所以,“喜欢”这两个汉字所代表的两位数就是85。例2 在图4-2所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字如果:巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?分析:还是先看个位,5个“谜”相加的结果个位还是等于“谜”,“谜”必定是5(0显然可以排出); 接着看十位,四个“字”相加再加上进位2,结果尾数还是“字”,那说明“字”只能是6; 再看百位,三个“数”相加再加上进位2,结果尾数还是“数”,“数”可能是4
16、或9; 再看千位,(1)如果“数”为4,两个“解”相加再加上进位1,结果尾数还是“解”,那说明“解”只能是9;5+6+4+9=24,30-24=6,“巧”等于6与“字”等于6重复,不能; (2)如果“数”为9,两个“解”相加再加上进位2,结果尾数还是“解”,那说明“解”只能是8;5+6+9+8=28,30-28=2,可以。 所以“数字谜”代表的三位数是965。例3在图4-3所示的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字请把这个竖式翻译成数字算式 分析:首先万位上“华”=1; 再看千位,“香”只能是8或9,那么“人”就相应的只能是0或1。但是“华”=1,所以,“人”就是0;
17、 再看百位,“人”=0,那么,十位上必须有进位,否则“港”+“人”还是“港”。由此可知“回”比“港”大1,这样就说明“港”不是9,百位向千位也没有进位。于是可以确定“香”等于9的; 再看十位,“回”+“爱”=“港”要有进位的,而“回”比“港”大1,那么“爱”就等于8;同时,个位必须有进位; 再看个位,两数相加至少12,至多13,即只能是5+7或6+7,显然“港”=5,“回”=6,“归”=7。 这样,整个算式就是:9567+1085=10652。例4 图4-4是一个加法竖式,其中E,F,I,N,O,R S,T,X,Y分别表示从0到9的不同数字,且F,S不等于零那么这个算式的结果是多少? 分析:先
18、看个位和十位,N应为0,E应为5;再看最高位上,S比F大1;千位上O最少是8;但因为N等于0,所以,I只能是1,O只能是9;由于百位向千位进位是2,且X不能是0,因此决定了T、R只能是7、8这两个;如果T=7,X=3,这是只剩下了2、4、6三个数,无法满足S、F是两个连续数的要求。所以,T=8、R=7;由此得到X=4;那么,F=2,S=3,Y=6。所以,得到的算式结果是31486。2、 训练巩固1. 在图4-5所示的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字那么D+G等于多少?2. 王老师家的电话号码是一个七位数,把它前四位组成的数与后三位组成的数相加得9063,把它前三位数
19、组成的数与后四位数组成的数相加得2529求王老师家的电话号码3. 将一个四位数的各位顺序颠倒过来,得到一个新的四位数如果新数比原数大7902,那么在所有符合这样条件的四位数中,原数最大是多少?3、 拓展提升1.已知图4-6所示的乘法竖式成立那么ABCDE是多少? 2. 某个自然数的个位数字是4,将这个4移到左边首位数字的前面,所构成的新数恰好是原数的4倍问原数最小是多少? 3. 在图4-7所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字则符合题意的数“迎春杯竞赛赞”是多少? (3) 定义新运算定义新运算通常是用特殊的符号表示特定的运算意义。它的符号不同于课本上明确定义或已经约定
20、的符号,例如“+、-、×、÷、>、<”等。表示运算意义的表达式,通常是使用四则运算符号,例如ab=3a-3b,新运算使用的符号是,而等号右边表示新运算意义的则是四则运算符号。正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。1、 例题与方法指导例1.设 ab都表示数,规定ab表示a的4倍减去b的3倍,即ab=4
21、15;a-3×b,试计算56,65。解56-5×4-6×3=20-18=2 65=6×4-5×3=24-15=9说明 例1定义的没有交换律,计算中不得将前后的数交换。例2.对于两个数a、b,规定ab表示3×a+2×b,试计算(56)7,5(67)。思路导航:先做括号内的运算。解 (56)7=(5×3+6×2)7=277=27×3+7×2=95 5(67)=5(6×3+7×2)=532=5×3+32×2=79说明 本题定义的运算不满足结合律。这是与
22、常规的运算有区别的。例3.已知23=2×3×4,42=4×5,一般地,对自然数a、b,ab 表示a×(a+1)×(a+b-1).计算(63)-(52)。思路导航:原式=6×7-5×6 =336-30规定:a=a+(a+1)+(a+2)+(a+b-1),其中a,b表示自然数。例4.求1100的值。已知x10=75,求x.思路导航:(1)原式=1+2+3+100=(1+100)×100÷2=5050(2)原式即x+(x+1)+(x+2)+(X+9)=75,所以10X+(1+2+3+9)=75 10x+45=7
23、5 10x=30 x=32、 巩固训练1.若对所有b,ab =a×x,x是一个与b无关的常数;ab=(a+b)÷2,且(13)3=1(33)。求(14)2的值。2. 如果规定:=2×3×4,=3×4×5,=4×5×6,=8×9×10,求+-+-+-的值。3、 能力提升(4) 鸡兔同笼鸡兔同笼问题是指鸡与兔同在一个笼中,已知鸡与兔的总头数以及鸡与兔的总足数,求鸡和兔各是多少只的应用题。这种类型题是古代趣题,在现实生活和生产中应用广泛,有着十分重要的使用价值。鸡兔问题,也叫简换问题。解答时,一般采用
24、假设法,即假定全部的只数都是鸡或者是兔,算出假定情况下的足数和实际上的足数和、足数差,然后推算出鸡和兔的只数。计算时的主要数量关系是:1.如果假定全部是兔,则鸡的只数=(每只兔的足数×总头数总足数)÷(每一只鸡与兔足数的差)简单理解就是:鸡的只数=(4 ×总头数总足数)÷2兔的只数=总头数鸡的只数2.如果假定全部是鸡,则兔的只数=(总足数每只鸡的足数×总头数) ÷(每一只鸡与兔足数的差)简单写就是兔的只数=(总足数2 ×总头数) ÷2鸡的只数=总头数兔的只数1、 例题与方法指导例1. 鸡兔同笼,共有100个头,32
25、0只脚,问鸡和兔各是多少只?思路导航:鸡有2只脚,兔有4只脚,如果把兔子的两只前脚用绳子捆起来,当成一只脚,两只后脚也用绳子捆起来,当成一只脚,那么兔子和鸡一样,都是2只脚。鸡和兔的总脚数就是100×2=200(只),但比实际320只脚要少320200=120(只),为什么会少了120只脚呢?是因为每只兔子只算一只前脚,一只后脚,而少算了一只前脚和一只后脚。也就是说每只兔子都少算了两只脚,一共少算了120只脚,所以兔子应该有120÷2=60(只)。解法一: 解法二:2×100=200(只)4×100=400(只)320200=120(只) 400320=
26、80(只)120÷2=60(只) 80÷2=40(只)10060=40(只) 10040=60(只)答:鸡有40只,兔有60只。例2. 5元纸币和2元纸币总张数是200张,已知它们的总面值是940元,这两种纸币各多少张?思路导航:(1)假设200张纸币完全是2元,共值: 2×200=400(元)(2)比实际少: 940400=540(元)(3)2元换成5元,每张增加: 52=3(元)(4)5元纸币有: 540÷3=180(张)(5)2元纸币有: 200180=20(张)答:有180张5元、20张2元纸币。例3. 鸡兔同笼,鸡比兔多25只,脚数共176只,
27、鸡、兔各多少只?思路导航:假设去掉多的25只鸡,则一共去掉2×25=50(只)脚,那么17650=126(只)脚是鸡和兔一样多的脚的总数量,而一对鸡兔共有24=6(只)脚,可以求出去掉25只鸡以后一共多少对鸡和兔,然后再加上去掉的25只鸡。2×25=50(只)17650=126(只)24=6(只)126÷6=21(对)鸡、兔各21只21+25=46(只) 鸡的只数答:鸡有46只,兔有21只。2、 巩固训练1.鸡兔同笼,共有头90只,脚252只。鸡兔各多少只?2.鸡兔同笼,共有头80只,鸡的脚数比兔的脚数多40只,鸡兔各多少只?3.30枚硬币由2分和5分组成,共值9
28、角9分,两种硬币各多少枚?3、 拓展提升1. 鸡兔共100只,鸡的脚数比兔少40只,鸡兔各多少只?2. 46人去划船,一共乘坐10条船,其中大船坐7人,小船坐4人,大、小船各多少条?3. 某车棚共停放三轮车和自行车共39辆,两种车轮总和96个,三轮车和自行车各多少辆?(5) 行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)
29、、速度(v)、时间(t)三个关系:1. 简单行程: 路程 = 速度 × 时间2. 相遇问题: 路程和 = 速度和 × 时间3. 追击问题: 路程差 = 速度差 × 时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。追击及遇问题1、 例题与方法指导例1.有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?思路导航:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有
30、三个人的速度,以及一个“3分钟”的时间。第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷ (38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。例2.东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发
31、,再经过3小时两车还相距15千米。乙车每小时行多少千米?思路导航: 从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米? (105-15)÷3=30(千米)答:乙车每小时行30千米。例3.兄妹二人同时
32、从家里出发到学校去,家与学校相距1400米。哥哥骑自行车每分钟行200米,妹妹每分钟走80米。哥哥刚到学校就立即返回来在途中与妹妹相遇。从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?思路导航: 从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了。解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离
33、:1400-80×10=600(米) 答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。2、 巩固训练1.两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?2. 快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?3. 小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?3、 拓展提升1.
34、 客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。求甲乙两站相距多少千米?2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车速度分别为每小时60千米和48千米,有一辆迎面开来的卡车分别在他们出发后6小时、7小时、8小时先后与甲、乙、丙三车相遇。求丙车的速度。3.两列火车从某站相背而行,甲车每小时行58千米,先开出2小时后,车以每小时62千米才开出,乙车开出5小时后,两列火车相距多少千米?火车过桥 过
35、桥问题也是行程问题的一种。首先要弄清列车通过一座桥是指从车头上桥到车尾离桥。列车过桥的总路程是桥长加车长,这是解决过桥问题的关键。过桥问题也要用到一般行程问题的基本数量关系: 过桥问题的一般数量关系是:因为:过桥的路程 = 桥长 + 车长 所以有:通过桥的时间 =(桥长 + 车长)÷车速车速 = (桥长 + 车长)÷过桥时间公式的变形: 桥长 = 车速×过桥时间 车长车长 = 车速×过桥时间 桥长后三个都是根据第二个关系式逆推出的。火车通过隧道的问题和过桥问题的道理是一样的,也要通过
36、上面的数量关系来解决。1、 例题与方法指导例1.一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?思路导航: 从火车头上桥,到火车尾离桥,这之间是火车通过这座大桥的过程,也就是过桥的路程是桥长 + 车长。通过“过桥的路程”和“车
37、速”就可以求出火车过桥的时间。 (1)过桥路程:6700 + 100 = 6800(米) (2)过桥时间:6800÷400 = 17(分)答:这列客车通过南京长江大桥需要17分钟。 例2.一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?思路导航: 要想求火车过桥的速度,就要知道“过桥的路程”和过桥的时间。 (1)过桥的路程:160 + 440 = 600(米)
38、0; (2)火车的速度:600÷30 = 20(米) 答:这列火车每秒行20米。例3.某列火车通过360米的第一个隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度?思路导航: 火车通过第一个隧道比通过第二个隧道多用了8秒,为什么多用8秒呢?原因是第一个隧道比第二个隧道长360216 = 144(米),这144米正好和8秒相对应,这样可以求出车速。火车24秒行进的路程包括隧道长和火车长,减去已知的隧道长,就是火车长。 (1)第一个隧道比第
39、二个长多少米? 360216 = 144(米) (2)火车通过第一个隧道比第二个多用几秒? 2416 = 8(秒) (3)火车每秒行多少米? 144÷8 = 18(米) (4)火车24秒行多少米? 18×24 = 432(米) (5)火车长多少米? 432
40、360 = 72(米)答:这列火车长72米。2、 巩固训练 1.某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?2. 一列火车全长265米,每秒行驶25米,全车要通过一座985米长的大桥,问需要多少秒钟?3. 一列长50米的火车,穿过200米长的山洞用了25秒钟,这列火车每秒行多少米?3、 拓展提升1.一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?2.一列货车全长240米,每秒行驶15米,全车连续通过一条隧道和一
41、座桥,共用40秒钟,桥长150米,问这条隧道长多少米?3.一列火车开过一座长1200米的大桥,需要75秒钟,火车以同样的速度开过路旁的电线杆只需15秒钟,求火车长多少米?4.在上下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?(6) 植树问题只要我们稍加留意,都会看到在马路两旁一般都种有树木。细心观察,这些树木的间距一般都是等距离种植的。路长、间距、棵数之间存在着确定的关系,我们把这种关系叫做“植树问题”。而植树问题,一般又可分为封闭型的和不封闭型的(开放型的)。封闭型的和不封闭型的植树问题,区别在于间
42、隔数(段数)与棵数的关系:1、不封闭型的(多为直线上),一般情况为两端植树,如下图所示,其路长、间距、棵数的关系是:但如果只在一端植树,如右图所示,这时路长、间距、棵数的关系就是:如果两端都不植树,那么棵数比一端植树还要再少一棵,其路长、间距、棵数的关系就是:2、封闭型的情况(多为圆周形),如下图所示,那么:植树问题的三要素:总路线长、间距(棵距)长、棵数只要知道这三个要素中任意两个要素,就可以求出第三个植树问题的分类:直线型的植树问题封闭型植树问题特殊类型的植树问题1、 例题与方法指导例1 有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,可种植垂柳多少棵?思路导航:每隔5米栽一棵垂柳
43、,即以两棵垂柳之间的距离5米为一段。公路的全长1000米,分成5米一段,那么里包含有1000÷5=200段。由于公路的两端都要求种树,所以要种植的棵数比分成的段数多1,所以,可种植垂柳200+1=201棵。例2 某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,在两株柳树中间种植2株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝桃之间相距多少米?思路导航:在圆周上植树时,由于可栽的株数等于分成的段数,所以,可栽柳树=1350÷9=150株;由于两株柳树之间等距离地栽株夹枝桃,而间隔数(段数)为150,所以栽夹枝桃的株数=2×150=300株;每隔9米种柳树
44、一株,在两株夹枝桃之间等距地栽2株夹枝桃,这就变成两端都不植树的情形,即2株等距离栽在9米的直线上,不含两端,所以,每两株之间的距离=9÷(2+1)=3(米)。例3 一条街上,一旁每隔8米有一个广告牌,从头到尾有16个广告牌,现在要进行调整,变成每12米有一个广告牌。那么除了两端的广告牌外,中间还有几个牌不需要移动?思路导航:16个广告牌,每相邻的两个广告牌的间隔为8米,则共有16-1=15 个间隔,这条街的总长度为8×15120(米);现在要调整为每12米一个广告牌,那么不移动的牌离端点的距离一定既是8的倍数,同时也是12的倍数;8×3=12×2=24
45、,也就是说,每24米及其倍数处的广告牌可以不需要移动;120÷245,即段数为5个,但要扣除两端的2个,所以,中间不需要移动的有5-1=4个。事实上,所谓植树问题只是我们对这一种类型问题的总称,并不单指植树问题。例如,与之类似的还有爬楼(梯)问题、队列问题、敲钟问题、锯木头问题的等。所以,植树问题又称上楼梯问题。2、 巩固训练1 某人要到一座高层楼的第8层办事,不巧停电,电梯停开。如果他从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?2 光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主
46、席台需要多少分钟?3 下图是五个大小相同的铁环连在一起的图形,它的长度是多少?十个这样的铁环连在一起有多长?4 一个木工把一根长24米的木条锯成了3米长的小段,每锯断一次要用5分钟,共需多少分钟?3、 巩固训练1. 一个街心花园如下图所示,它由四个大小相等的等边三角形组成。已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花。问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?2. 时钟4点敲4下,用12秒敲完。那么6点钟敲6下,几秒钟敲完?3. 铁路旁每隔50米有一根电线杆,某旅客为了计算火车速度,测量出从经过第1根电线杆起到经过第37根电线杆止共用了2分。火车的速度是多少?(7) 有趣
47、的数阵图把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.为了让同学们学会解数阵图的分析思考方法,我们举例说明.一、例题与方法指导例1.在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。思路导航:由上一讲例4知中间方格中的数为7。再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。因为九个数都不大于12,由16x12知4x
48、,由x+212知x10,即4x10。考虑到5,7,9已填好,所以x只能取4,6,8或10。经验证,当x6或8时,九个数中均有两个数相同,不合题意;当x4或10时可得两个解(见下图)。这两个解实际上一样,只是方向不同而已。例2.将九个数填入下图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有证明:思路导航:设中心数为d。由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。由此计算出第一行中间的数为2db,右下角的数为2d-c(见下图)。根据第一行和第三列都可以求出上图中处的数由此得到3d-c-(2d-b)3d-a-(2d-c),3d-c-2db3d-a-2dc,dcbd
49、ac,2cab,abc2。值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。例3.在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。思路导航:由上一讲例4知,中心数为90÷330;由本讲例2知,右上角的数为(2357)÷240(见左下图)。其它数依次可填(见右下图)。例4.在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。思路导航:由例2知,右下角的数为(810)÷2=9;由上一讲例4知,中心数为(59)÷2=7(见左下图)
50、,且每行、每列、每条对角线上的三数之和都等于7×3=21。由此可得如图的填法。二、巩固训练 1. 将16分别填在图中,使每条边上的三个内的数的和相等. 2. 把18个数分别填入中,使每条边上三个数的和相等.3. 把19个数分别填入中,使每条边上四个数的和相等.4. 把110填入图中,使五条边上三个内的数的和相等. 5. 将18个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.(8) 有趣的数阵图练习1.把17填入下图中,使每条线段上三个内的数的和相等. 2.把116填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.3.把49填入下图中,使每条线上三个数的
51、和相等,都是18.4. 把18这8个数填入下图,使每边上的加、减、乘、除成立.-÷×=+=5.把09填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.6.把111填入图中,使每条线上三个数的和相等.7.把18,填入图中,使每条线及正方形四个顶点上的数的和相等.8.把19,填入下图中,使每条线段三个数和及四个顶点的和也相等.9.把17,23,25,31,46,53,58,66,72,88,94,100十二个数填入下图,使任意三个相邻的数相加的和除以7的余数相等.(9) 枚举法一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏
52、的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。这种分析问题、解决问题的方法,称之为枚举法。枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。1、 例题与方法指导例1. 一本书共100页,在排页码时要用多少个数字是6的铅字?思路导航:解:把个位是6和十位是6的数一个一个地列举出来,数一数。个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。总共10+10=20(个)答:在排页
53、码时要用20个数字是6的铅字。例2. 从A市到B市有3条路,从B市到C市有两条路。从A市经过B市到C市有几种走法?(适于三年级程度)思路导航:解:作图3-1,然后把每一种走法一一列举出来。第一种走法:A B C第二种走法:A B C第三种走法:A B C第四种走法:A B C第五种走法:A B C第六种走法:A B C答:从A市经过B市到C市共有6种走法。例3. 印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?思路导航:(1)数码一共有10个:0、1、28、9。0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。(2)页码是两位数的从第10页到第99页。因为99-9=9
54、0,所以,页码是两位数的页有90页,用数码:2×90=180(个)(3)还剩下的数码:1890-9-180=1701(个)(4)因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。所以页码最高是3位数,不必考虑是4位数了。往下要看1701个数码可以排多少页。1701÷3=567(页)(5)这本书的页数:9+90+567=666(页)2、 巩固训练1. 如图9-10,有8张卡片,上面分别写着自然数1至8。从中取出3张,要使这3张卡片上的数字之和为9。问有多少种不同的取法? 2.从1至8这
55、8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法? 3. 现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法? 4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法? 5.有3个工厂共订300份吉林日报,每个工厂最少订99份,最多101份。问一共有多少种不同的订法? 3、 能力提升1. 甲、乙、丙、丁4名同学排成一行。从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?2. abcd代表一个四位数,其中a,b,c,d均为1,2,3,4中的某个数字,但彼此不同,例如2134。请写出所有满足关系ab,bc,cd的四位数abcd来。3. 一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车修理厂租赁合同版B版
- 会计学的课程设计
- 2024年智能节水水暖设备研发与承包合同3篇
- 2024年环保设施运行委托检验合同范本3篇
- 2024年智能家电产品研发合作合同
- 煤矿课程设计前言
- 电子信息工程 课程设计
- 2024年标准采购合同中英版本详尽条款版B版
- 太阳能工程课程设计
- 感恩 教育 课程设计
- 《妇科肿瘤化疗方案》课件
- 关于二十四节气的常识
- 微积分第一学期期末试卷汇总
- 《幼儿园家长工作指导》 课件 模块三 项目2 幼儿园家长工作特殊指导
- 体育学科2022版新课程标准测试题含答案
- 部门王者荣耀比赛策划方案
- 传统村落景观风貌保护与复兴研究以传统村落王硇村为例
- 安徽省芜湖市镜湖区芜湖市师范学校附属小学2023-2024学年五年级上学期期末语文试题
- 文旅企业消防安全培训课件
- 政府专项债务知识讲座
- 中国银屑病诊疗指南(2018完整版)
评论
0/150
提交评论