下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考函数性质(文科)优能提醒: 请认真审题,仔细作答,发挥出自己的真实水平! 函数的性质复习题1讨论下述函数的奇偶性:解:(1)函数定义域为R, ,f(x)为偶函数;(另解)先化简:,显然为偶函数;从这可以看出,化简后再解决要容易得多。(2)须要分两段讨论:设设当x=0时f(x)=0,也满足f(x)=f(x);由、知,对xR有f(x) =f(x), f(x)为奇函数;(3),函数的定义域为,f(x)=log21=0(x=±1) ,即f(x)的图象由两个点 A(1,0)与B(1,0)组成,这两点既关于y轴对称,又关于原点对称,f(x)既是奇函数,又是偶函数;(4)x2a2, 要分a &
2、gt;0与a <0两类讨论,当a >0时, ,当a >0时,f(x)为奇函数; 当 时, 既不是奇函数,也不是偶函数.点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能 化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变)2重庆文)已知定义域为的函数是奇函数。()求的值; ()若对任意的,不等式恒成立,求的取值范围;【解】(1) (2)点评:若奇函数的定义域包含,则3.设f(x)是定义在R上的偶函数,且f(1+x)= f(1x),当1x0时,f (x) = x,则f (8.6 ) = _ (第八届希望杯高二 第一
3、试题)解:f(x)是定义在R上的偶函数x = 0是y = f(x)对称轴;又f(1+x)= f(1x) x = 1也是y = f (x) 对称轴。故y = f(x)是以2为周期的周期函数,f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (0.6 ) = 0.34. 设f(x)是定义在R上的奇函数,且f(x+2)= f(x),当0x1时,f (x) = x,则f (7.5 ) = ( ) (A) 0.5(B)0.5(C) 1.5(D) 1.5解:y = f (x)是定义在R上的奇函数,点(0,0)是其对称中心; 又f (x+2 )= f (x) = f (x),即f (
4、1+ x) = f (1x), 直线x = 1是y = f (x) 对称轴,故y = f (x)是周期为2的周期函数。 f (7.5 ) = f (80.5 ) = f (0.5 ) = f (0.5 ) =0.5 故选(B)5(2009山东卷文)已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则( ). A. B. C. D. 答案 D解析 因为满足,所以,所以函数是以8为周期的周期函数, 则,又因为在R上是奇函数, ,得,而由得,又因为在区间0,2上是增函数,所以,所以,即,故选D. 【命题立意】:本题综合考查了函数的奇偶性、单调性、周期性等性质,运用化归的数学思想和数形结合的思想
5、解答问题. 6(1)求函数的单调区间;(2)已知若试确定的单调区间和单调性。解:(1)函数的定义域为,分解基本函数为、显然在上是单调递减的,而在上分别是单调递减和单调递增的。根据复合函数的单调性的规则:所以函数在上分别单调递增、单调递减。(2)解法一:函数的定义域为R,分解基本函数为和。显然在上是单调递减的,上单调递增;而在上分别是单调递增和单调递减的。且,根据复合函数的单调性的规则:所以函数的单调增区间为;单调减区间为。解法二:, 令 ,得或,令 ,或单调增区间为;单调减区间为。点评:该题考察了复合函数的单调性。要记住“同增、异减”的规则.也可通过导数方法求单调性。7已知函数是定义在上的周期函数,周期,函数是奇函数又知在上是一次函数,在上是二次函数,且在时函数取得最小值。证明:;求的解析式;求在上的解析式。解:是以为周期的周期函数,又是奇函数,。当时,由题意可设,由得,。是奇函数,又知在上是一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专用:综合劳动合同协议
- 2024年全球技术许可协议
- 2024年个人借款债权转换协议样本
- 2024年品牌推广协议:公司与广告商合同
- 2024年商场灯具安装工程协议
- 2024年专用婚礼策划合作协议
- 2024年办公设备购销协议
- 2024年同行业竞业限制协议
- 2024年商业街店铺租赁协议
- 2024年个人代表公司协商委托协议
- 微观经济学(浙江大学)知到章节答案智慧树2023年
- 建筑学专业知识考试参考题库(300题)
- API520-安全阀计算PART1(中文版)
- DDI-高绩效辅导培训课件
- 小升初个人简历模板-
- 人教版中职数学教材基础模块上下册教案
- 糕点生产许可证审查细则
- 叉车选型的注意点
- 第一单元 计算机中的编码 课件 初中信息技术七年级上册
- 烧结过程中氮氧化物生成机理及控制
- GB/T 7701.2-2008煤质颗粒活性炭净化水用煤质颗粒活性炭
评论
0/150
提交评论