延边市重点中学2025年初三下学期摸底数学试题含解析_第1页
延边市重点中学2025年初三下学期摸底数学试题含解析_第2页
延边市重点中学2025年初三下学期摸底数学试题含解析_第3页
延边市重点中学2025年初三下学期摸底数学试题含解析_第4页
延边市重点中学2025年初三下学期摸底数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

延边市重点中学2025年初三下学期摸底数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+ B.2+2 C.4 D.32.方程的解是A.3 B.2 C.1 D.03.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=14.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25° B.50° C.60° D.30°5.在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣6.若分式方程无解,则a的值为()A.0 B.-1 C.0或-1 D.1或-17.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)8.在实数,,,中,其中最小的实数是()A. B. C. D.9.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()A.①③ B.②③ C.③④ D.②④10.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160011.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B. C. D.12.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是()A.4 B.5 C.6 D.7二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.14.若不等式组的解集为,则________.15.计算的结果为_____.16.如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.17.反比例函数的图象经过点(﹣3,2),则k的值是_____.当x大于0时,y随x的增大而_____.(填增大或减小)18.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)20.(6分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.21.(6分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(1)问题探究:如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.(3)应用拓展:如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.22.(8分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?23.(8分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.24.(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.25.(10分)解不等式组请结合题意填空,完成本题的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.26.(12分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.27.(12分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.详解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选B.点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.2、A【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A.3、D【解析】

先去分母解方程,再检验即可得出.【详解】方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验4、A【解析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故选A.5、A【解析】

根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<-<0<0.3∴最大为0.3故选A.本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.6、D【解析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.7、B【解析】

根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,B选项(,)到坐标原点的距离为=2,因此点在圆上,C选项(1,3)到坐标原点的距离为>2,因此点在圆外D选项(1,)到坐标原点的距离为<2,因此点在圆内,故选B.本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.8、B【解析】

由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【详解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的实数为-2;

故选:B.本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.9、D【解析】

①错误.由题意a>1.b>1,c<1,abc<1;

②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;

③错误.抛物线与x轴的另一个交点是(1,1);

④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a>1,

∵抛物线交y轴于负半轴,∴c<1,

∵对称轴在y轴左边,∴-<1,

∴b>1,

∴abc<1,故①错误.

∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,

当ax2+bx+c<mx+n时,-3<x<-1;

即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,

抛物线与x轴的另一个交点是(1,1),故③错误,

∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,

∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.

故选:D.本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.10、A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.考点:一元二次方程的应用.11、A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是.故选A.12、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解析】由题意,得b−1=−1,1a=−4,解得b=−1,a=−1,∴ab=(−1)×(−1)=1,故答案为1.14、-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.15、﹣2【解析】

根据分式的运算法则即可得解.【详解】原式===,故答案为:.本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.16、-6【解析】如图,作AC⊥x轴,BD⊥x轴,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,设A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.17、﹣6增大【解析】

∵反比例函数的图象经过点(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,则y随x的增大而增大.故答案为﹣6;增大.本题考查用待定系数法求反函数解析式与反比例函数的性质:(1)当k>0时,函数图象在一,三象限,在每个象限内,y随x的增大而减小;(2)当k<0时,函数图象在二,四象限,在每个象限内,y随x的增大而增大.18、3【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考点:平行线分线段成比例.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、【解析】

过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.【详解】过点A作,垂足为G.则,在中,,由题意,得,∴,连接FD并延长与BA的延长线交于点H.由题意,得.在中,,∴.在中,.答:支角钢CD的长为45cm,EF的长为.考点:三角函数的应用20、BD=2.【解析】

试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.试题解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.21、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.【解析】

(1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.(1)点B是的重心,得到设则根据勾股定理可得即可求出它们的比值.(3)分两种情况进行讨论:①当时和②当时.【详解】(1)△ABC是“等高底”三角形;理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC关于BC所在直线的对称图形是,∴∠ADC=90°,∵点B是的重心,∴设则由勾股定理得∴(3)①当时,Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.∴∴BE=1,即EC=4,∴∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴∠DCF=45°,设∵l1∥l1,∴∴即∴∴Ⅱ.如图4,此时△ABC等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到,∴是等腰直角三角形,∴②当时,Ⅰ.如图5,此时△ABC是等腰直角三角形,∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,∴∴Ⅱ.如图6,作于E,则∴∴∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,∴∥l1,即直线与l1无交点,综上所述,CD的值为属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.22、(1)120;(2)

;(3)答案见解析;(4)1650.【解析】

(1)依据节目B的数据,即可得到调查的学生人数;(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;(3)求得C部分的人数,即可将条形统计图补充完整;(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.【详解】,故答案为120;,故答案为;:,如图所示:,答:该校最喜爱中国诗词大会的学生有1650名.本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.23、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】

试题分析:(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解;(2)根据相似三角形的判定与性质,由三角形的周长比可求解;(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解.试题解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.24、(1)1;(2)详见解析;(3)750;(4).【解析】

(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=.本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.25、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.【解析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(I)解不等式(1),得x≥;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为:≤x≤1.故答案为x≥、x≤1、≤x≤1.本题考查的是解一元一次不等式组,正确求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论