版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、容:1、一元一次函数;2、一元二次函数;3、反比例函数二次函数知识点一、二次函数概念:一、二次函数概念:2b, c是常数,a 0)的函数,叫做二次函数。这1二次函数的概念:一般地,形如y ax bxc(a,c里需要强调:和一元二次方程类似,二次项系数a 0,而b,可以为零二次函数的定义域是全体实数2y ax bxc的结构特征: 等号左边是函数,右边是关于自变量x的二次式,x的最高次2. 二次函数b, c数是 2a,是常数,a是二次项系数,b是一次项系数,c是常数项二、二次函数的基本形式:二、二次函数的基本形式:21. 二次函数基本形式:二次函数y ax bxc用配方法可化成:y ax h k的
2、形式,其中2b4 ac b2h , k 2 a4 a.2.二次函数由特殊到一般,可分为以下几种形式:222y axy ax ky ax bx cy a x hy a x h k;22三、二次函数的性质:三、二次函数的性质:2y ax1、的性质:a 的绝对值越大,抛物线的开口越小。a的符号开口方向顶点坐标对称轴性质00,a 0向上y轴x 0时,y随x的增大而增大;x 0时,y随x的增大而减小;x 0时,y有最小值0 x 0时,y随x的增大而减小;x 0时,y随a 0向下00,y轴x的增大而增大;x 0时,y有最大值02y ax c的性质:上加下减。2.a的符号开口方向顶点坐标对称轴性质c0,a
3、0向上y轴x 0时,y随x的增大而增大;x 0时,y随x的增大而减小;x 0时,y有最小值c- 1 - / 18a 0向下c0,y轴x 0时,y随x的增大而减小;x 0时,y随x的增大而增大;x 0时,y有最大值c3.y axh2的性质:左加右减。开口方向顶点坐标对称轴性质x h时,y随x的增大而增大;x h时,y随a的符号a 0向上0h,x=hx的增大而减小;x h时,y有最小值0 x h时,y随x的增大而减小;x h时,y随a 0向下0h,x=hx的增大而增大;x h时,y有最大值04.y axhk2的性质:开口方向顶点坐标对称轴性质x h时,y随x的增大而增大;x h时,y随a的符号a
4、0向上h, kx=hx的增大而减小;x h时,y有最小值kx h时,y随x的增大而减小;x h时,y随a 0向下h, kx=hx的增大而增大;x h时,y有最大值k5.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a一样,那么抛物线的开口方向、开口大小完全一样,只是顶点的位置不同.6.求抛物线的顶点、对称轴的方法b 4acb2b 4acb2by ax bxc ax (,)x4a,顶点是2a2a.2a4a(1)公式法:,对称轴是直线22(2)配方法:运用配方法将抛物线的解析式化为yaxhk的形式,得到顶点为 (h,k),对称轴是2x h.(3)运用抛物线的对称性:由于抛物线是以对称轴为
5、轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.四、二次函数图象的平移:四、二次函数图象的平移:- 2 - / 181. 平移步骤:方法一: 将抛物线解析式转化成顶点式 保持抛物线y ax的形状不变,将其顶点平移到2y axhk2,确定其顶点坐标h, k;h, k处,具体平移方法如下:y=ax2+ky=ax2向上(k0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k0)】平移|k|个单位y=a(x-h)2+k2. 平移规律:在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”概括成八个字“左加右减,上加下减”
6、 y方法二:y ax bx c沿轴平移:向上(下)平移m个单位,y ax bx c变成22y ax2bx c m(或y ax2bx c m)22y ax bx cy ax bx c变 成m沿 轴 平 移 : 向 左 ( 右 ) 平 移个 单 位 ,y a(x m)2b(x m)c(或y a(x m)2b(x m)c)五、二次函数五、二次函数y axhk222与与y ax bxc的比较的比较2y ax bxc是两种不同的表达形式,后者通过配方可以得到前者,与从解析式上看,2y axhkb 4acb2b4acb2y axh , k 2a4a2a4a即,其中六、二次函数的图象与各项系数之间的关系六、
7、二次函数的图象与各项系数之间的关系 1.二次项系数a2y ax bxc中,a作为二次项系数,显然a 0二次函数 当a 0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大; 当a 0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小b决定了抛物线的对称轴2. 一次项系数b: 在二次项系数a确定的前提下, 在a 0的前提下, 当b 0- 3 - / 18bb00时,2a,即抛物线的对称轴在y轴左侧;当b 0时,2a,即抛物线的对称轴就是y轴;当b 0b0时,2a,即抛物线对称轴在
8、y轴的右侧b0 在a 0的前提下, 结论刚好与上述相反, 即当b 0时,2a, 即抛物线的对称轴在y轴右侧; 当b 0bb00时,2a,即抛物线的对称轴就是y轴;当b 0时,2a,即抛物线对称轴在y轴的左侧总结起来,在a确定的前提下,b决定了抛物线对称轴的位置(3)ab的符号的判定:对称轴“左同右异”x b2a在y轴左边则ab 0,在y轴的右侧则ab 0,概括的说就是3. 常数项c: 当c 0时, 抛物线与y轴的交点在x轴上方, 即抛物线与y轴交点的纵坐标为正; 当c 0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0; 当c 0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴
9、交点的纵坐标为负总结起来,c决定了抛物线与y轴交点的位b, c置总之,只要总之,只要a,都确定,那么这条抛物线就是唯一确定的都确定,那么这条抛物线就是唯一确定的二次函数解析式的确定:一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标一样的两点,常选用顶点式七、二次函数图象的对称七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达22 1. 关于x轴对称:y ax bxc关于x轴对称后,得到的解析式是y a
10、x bxc;y axhk2y axhk关于x轴对称后,得到的解析式是;222y ax bxcy ax bxc;yy2. 关于轴对称:关于轴对称后,得到的解析式是y axhk2y axhk关于y轴对称后,得到的解析式是;2223. 关于原点对称:y ax bxc关于原点对称后,得到的解析式是y ax bxc;y axhk2关于原点对称后,得到的解析式是y axhk2;2y ax bxc关于顶点对称后,得到的解析式是 4. 关于顶点对称(即:抛物线绕顶点旋转180) :b222y ax bxcy a xhky a xhk2a;关于顶点对称后,得到的解析式是2- 4 - / 18 5.关 于 点m,
11、 n2对 称 :y axhk2关 于 点m, n对 称 后 , 得 到 的 解 析 式 是y axh2m2nk根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标与开口方向,再确定其对称抛物线的顶点坐标与开口方向,然后再写出其对称抛物线的表达式八、二次函数与一元二次方程:八、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况) :22y ax bx c当函数值y 0时的特殊情况.ax bx c 0一
12、元二次方程是二次函数2a x , 0 ,bx2, 0(x1 x2)图象与x轴的交点个数: 当 b 4ac 0时,图象与x轴交于两点1,其ax2bxc 0a 0 x ,x12中的是一元二次方程的两根这两点间的距离b24acab x2 x1a. 当 0时,图象与x轴只有一个交点; 当 0时,图象与x轴没有交点.1当a 0时,图象落在x轴的上方,无论x为任何实数,都有y 0;2当a 0时,图象落在x轴的下方,无论x为任何实数,都有y 02y ax bx c的图象与y轴一定相交,交点坐标为(0,c);2. 抛物线3. 二次函数常用解题方法总结: 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;
13、 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;2 根据图象的位置判断二次函数y ax bx c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合; 二次函数的图象关于对称轴对称, 可利用这一性质, 求和已知一点对称的点坐标, 或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.2ax bx c(a 0)本身就是所含字母x的二次函数;下 与二次函数有关的还有二次三项式, 二次三项式面以a 0时为例,揭示二次函数、二次三项式和一元二次方程之间的在联系 0抛物线与x轴有两个交点 0抛物线与x轴只 0二次三项式的值可正、可零、可负一元二次方程有
14、两个不相等实根二次三项式的值为非负一元二次方程有两个相等的实数根二次三项式的值恒为正一元二次方程无实数根.有一个交点抛物线与x轴无交点- 5 - / 18九、函数的应用九、函数的应用刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型二次函数考查重点与常见题型1、考查二次函数的定义、性质,有关试题常出现在选择题中,如:22y (m2)x m m2的图像经过原点, 则m的值是()x已知以为自变量的二次函数。2、综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考查两个函数的图像,试题类型为选择题,如:如图,如果函数y kx b的图像在第一、二、三象限,那么
15、函数y kx2bx 1的图像大致是() y y y y 1 1 0 x o-1 x 0 x 0 -1 x a b c d3、考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性x 的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为53,求这条抛物线的解析式。4、考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:2y ax bx c(a0)与 x 轴的两个交点的横坐标是1、3,与 y 轴交点的纵坐标是3已知抛物线2(1)确定抛物线的解析式; (2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5考查代数与几何的综
16、合能力,常见的作为专项压轴题。例题经典由抛物线的位置确定系数的符号cm(b,)2y ax bx ca在()例 1 (1)二次函数的图像如图 1,则点 a第一象限 b第二象限 c第三象限 d第四象限(2)已知二次函数 y=ax2+bx+c(a0)的图象如图 2 所示,则下列结论:a、b 同号;当 x=1 和x=3 时,函数值相等;4a+b=0;当 y=-2 时,x 的值只能取 0.其中正确的个数是()a1 个 b2 个 c3 个 d4 个 (1) (2)点评弄清抛物线的位置与系数a,b,c 之间的关系,是解决问题的关键- 6 - / 18例 2.已知二次函数 y=ax2+bx+c 的图象与 x
17、轴交于点(-2,o)、(x1,0),且 1x12,与 y 轴的正半轴的交点在点(o, 2)的下方 下列结论: abo; 4a+co, 其中正确结论的个数为( ) a 1 个 b. 2 个 c. 3 个 d4 个答案:d会用待定系数法求二次函数解析式例 3.已知:关于 x 的一元二次方程 ax2+bx+c=3 的一个根为 x=-2,且二次函数 y=ax2+bx+c 的对称轴是直线 x=2,则抛物线的顶点坐标为( ) a(2,-3) b.(2,1) c(2,3) d(3,2)答案:cb(x2,0)两点(x1 x2),例 4.已知: 二次函数 y=ax2-(b+1)x-3a的图象经过点p(4, 10
18、), 交 x 轴于a(x1,0),交 y 轴负半轴于 c 点,且满足 3ao=ob(1)求二次函数的解析式;(2)在二次函数的图象上是否存在点 m,使锐角mcoaco?若存在,请你求出m 点的横坐标的取值围;若不存在,请你说明理由(1)解:如图抛物线交x 轴于点 a(x1,0),b(x2,o),则 x1x2=30,又x1o,x1o,30a=ob,x2=-3x1x1x2=-3x12=-3x12=1. x10,x1=-1x2=3点 a(-1,o),p(4,10)代入解析式得解得 a=2 b=3二次函数的解析式为y-2x2-4x-6(2)存在点 m 使mc0aco(2)解:点 a 关于 y 轴的对称
19、点 a(1,o),直线 a,c 解析式为 y=6x-6 直线 ac 与抛物线交点为(0,-6),(5,24)符合题意的 x 的围为-1x0 或 ox5当点 m 的横坐标满足-1xo 或 oxaco例 5、 某产品每件成本 10 元,试销阶段每件产品的销售价x(元)与产品的日销售量 y(件)之间的关系如下表:x(元)123500y(件)221500若日销售量 y 是销售价 x 的一次函数(1)求出日销售量 y(件)与销售价 x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?15k b 25,2k b 20解得 k=-1,b=40,即一次函
20、数表达式 解析(1)设此一次函数表达式为y=kx+b则为 y=-x+40(2)设每件产品的销售价应定为x 元,所获销售利润为w 元:w=(x-10) (40-x)=-x2+50 x-400=-(x-25)2+225产品的销售价应定为25 元,此时每日获得最大销售利润为225 元二次函数知识点汇总用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失2y ax bx c中,a,b,c的作用9.抛物线(1)a决定开口方向与开口大小,这与y ax中的a完全一样.- 7 - / 182(2)b和a共同决定抛物线对称轴的位置.由于抛物线yax bxc的对称轴是直线b 0时,对称轴为yb 0a轴
21、;(即a、b同号)时,对称轴在2x b2a,故:y轴左侧;b 0a(即a、b异号)时,对称轴在y轴右侧.2y ax bx c与y轴交点的位置.c(3)的大小决定抛物线2y cy ax bx c与y轴有且只有一个交点(0,c):x 0当时,抛物线c 0,抛物线经过原点; c 0,与y轴交于正半轴;c 0,与y轴交于负半轴.b 0ya以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.10.几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标(0,0)(0,k)(h,0)(h,k)y ax2y ax2 ky ax h2x 0(y轴)当a 0时开口向上当a 0时开口向
22、下x 0(y轴)x hx hbx 2ay ax h k2y ax bx c11.用待定系数法求二次函数的解析式2b4ac b2,4a)(2a2y ax bx c.已知图像上三点或三对x、y的值,通常选择一般式. (1)一般式: (2)顶点式:y ax h k.已知图像的顶点或对称轴,通常选择顶点式.2 (3)交点式:已知图像与x轴的交点坐标x1、x2,通常选用交点式:y ax x1x x2.12.直线与抛物线的交点2y ax bx c得交点为(0 , c)y (1)轴与抛物线22y ax bx cyx hhah bh c). (2)与轴平行的直线与抛物线有且只有一个交点(,2y ax bx c
23、的图像与x轴的两个交点的横坐标x1、x2,是对应x (3)抛物线与轴的交点:二次函数2ax bx c 0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根一元二次方程的判别式判定:有两个交点 0抛物线与- 8 - / 18x轴相交;有一个交点(顶点在x轴上) 0抛物线与x轴相切;没有交点 0抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,2两交点的纵坐标相等,设纵坐标为k,则横坐标是ax bx c k的两个实数根.2y kxn k 0y ax bx ca 0的图像g的交点,由方程组l(5)一次函数的
24、图像 与二次函数y kx n2y ax bx c的解的数目来确定:方程组有两组不同的解时l与g有两个交点;方程组只有一组解时l与g只有一个交点;方程组无解时l与g没有交点.20,bx2, 0,由于y ax bx c与x轴两交点为ax1,x(6)抛物线与轴两交点之间的距离:若抛物线bcx x ,x x 12x1、x2是方程ax2 bx c 0的两个根,故12aaab x1 x2x1 x22x1 x22b24acb4c4x1x2 aaaa213二次函数与一元二次方程的关系:22y ax bx cy ax bx c当函数 y 的值为 0 时的情况(1)一元二次方程就是二次函数2y ax bx c的图
25、象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当(2)二次函数2y ax bx c的图象与x轴有交点时, 交点的横坐标就是当y 0时自变量x的值, 即一元二二次函数次方程ax bxc 0的根22y ax bx cy ax bx c有两个不x(3)当二次函数的图象与轴有两个交点时,则一元二次方程2y ax bx c的图象与x轴有一个交点时,则一元二次方程相等的实数根;当二次函数2ax2bxc 0有两个相等的实数根;当二次函数y ax bx c的图象与x轴没有交点时,则一元二2次方程ax bxc 0没有实数根14.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是
26、求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值15.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它2- 9 - / 18们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等黄冈中学“没有学不好滴数学”系列之十二二次函数知识点详解(最新原创助记口诀)知识点四,正比例函数和一次函数1、一般地,如果y kx b(k,b 是常数,k0) ,那么 y 叫做 x 的一次函数。特别地,当一次函数y kx b中
27、的 b 为 0 时,y kx(k 为常数,k0) 。这时,y 叫做 x 的正比例函数。2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数y kx b的图像是经过点(0,b)的直线;正比例函数y kx的图像是经过原点(0,0)的直线。k 的符号b 的符号函数图像 y 0 x y 0 x y 0 x y 0 x- 10 - / 18图像特征b0图像经过一、二、三象限,y 随 x 的增大而增大。k0b0图像经过一、二、四象限,y 随 x的增大而减小k0b0 时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时,y 随 x 的增大而增大
28、(2)当 k0 时,y 随 x 的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y kx(k0)中的常数 k。确定一个一次函数,需要确定一次函数定义式y kx b(k0)中的常数 k 和 b。解这类问题的一般方法是待定系数法知识点五、反比例函数y 1、反比例函数的概念:一般地,函数kx(k 是常数,k0)叫做反比例函数。反比例函数的解析式1y kx也可以写成的形式。自变量 x 的取值围是 x0 的一切实数,函数的取值围也是一切非零实数。2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关
29、于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。反比例函数的性质反 比 例函数y k(k 0)xk0 y o xx 的取值围是 x0,图像性质 y 的取值围是 y0;当 k0 时,函数图像的两个分支分别在第一、三象限。在每个象限,y随 x 的增大而减小。 y 的取值围是 y0;当 k0a0 y 0 x(1)抛物线开口向下,并向下无限延伸; y图像 0 x(1)抛物线开口向上,并向上无限延伸;bbbb(2)对称轴是x=2a,顶点坐标是(2a,2a2a(2)对称轴是 x=,顶点坐标是(,4ac b4a
30、) ;24ac b24a) ;bb性质(3)在对称轴的左侧,即当 x2a时,y 随2a(3)在对称轴的左侧,即当 x2a时,y 随 x 的增大而增大,简记左减右增;xb2a时,y 随 x 的增大而减小,简记左增右减;b(4)抛物线有最低点,当 x=2a时,y 有最小b(4)抛物线有最高点,当 x=2a时,y 有最- 13 - / 18值,y最小值4ac b24a大值,y最大值4ac b24a2y ax bx c(a,b,c是常数,a 0)中,a、b、c的含义:a表示开口方向:a0 时,2、二次函数b抛物线开口向上;a0 时,图像与 x轴有两个交点;当=0 时,图像与 x 轴有一个交点;当0)【
31、或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或下(k0)【或左(h0)】平移|k|个单位y=a(x-h)2y=a(x-h)2+k平移规律:在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”函数平移图像大致位置规律(中考试题中,只占3 分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)特别记忆-同左上加异右下减 (必须理解记忆)说明 函数中 ab 值同号,图像顶点在 y 轴左侧同左,a b 值异号,图像顶点必在y 轴右侧异右向左向上移动为加左上加,向右向下移动为减右下减。- 14 - / 18k tan直线斜率:y2 y1x2 x1 b 为直线在 y
32、 轴上的截距 4、直线方程:两点由直线上两点确定的y y1 kxb (tan)xb y2 y1x(x x1)x2 x1此公式有多种变形直线的两点式方程, 简称两式:牢记;点斜;斜截直线的斜截式方程,简称斜截式: ykxb(k0)xy1yabx截距由直线在轴和轴上的截距确定的直线的截距式方程,简称截距式:5、设两条直线分别为,l1:y k1x b1l2:y k2x b2若l1/ l2,则有l1/l2 k1 k2且b1 b2。若l1 l2 k1 k2 1,点 p(x0,y0)到直线 y=kx+b(即:kx-y+b=0) 的距离 :d kx0 y0bk2 (1)2kx0 y0bk212y ax bx
33、 c中, a b c,的作用抛物线(1)a决定开口方向与开口大小,这与y ax中的a完全一样.2y ax bx c的对称轴是直线ba(2)和共同决定抛物线对称轴的位置.由于抛物线2x bbb 0 0yyb 0b2a,故:时,对称轴为轴;a(即a、同号)时,对称轴在轴左侧;a(即a、b异号)时,对称轴在y轴右侧.口诀 - 同左异右2y ax bx c与y轴交点的位置.c(3)的大小决定抛物线2y cy ax bx c与y轴有且只有一个交点(0,c)x 0当时,抛物线: c 0,抛物线经过原点;c 0,与y轴交于正半轴;c 0,与y轴交于负半轴.以上三点中,当结论和条件互换时,b 0y仍成立.如抛
34、物线的对称轴在轴右侧,则a.十一、初中数学助记口诀(函数部分)特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;x 轴上 y 为 0,x 为 0 在 y 轴。对称点坐标:对称点坐标要记牢,相反数位置莫混淆, x 轴对称 y 相反,y 轴对称,x 前面添负号; 原点对称最好记,横纵坐标变符号。自变量的取值围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。函数图像的移动规律:若把一次函数解析式写成 y=k(x+0)+b、二次函数的解析式写成 y=a(x+h)2+k 的- 15 - / 18形式,则用下面后的
35、口诀“左右平移在括号,上下平移在末稍,同左上加 异右下减一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数 k 与 b,作用之大莫小看,k 是斜率定夹角,b 与 y 轴来相见,k 为正来右上斜,x 增减 y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远。二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a 断,c 与 y 轴来相见,b 的符号较特别,符号与a 相关联;顶点位置先找见, y 轴作为参考线,左同右异中为 0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就
36、现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k 为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。正比例函数是直线,图象一定过圆点,k 的正负是关键,决定直线的象限,负 k 经过二四限,x 增大 y 在减,上下平移 k 不变,由引得到一次线,向上加b 向下减,图象经过三个限,两点决定一条线,选定系数是关键。反比例函数双曲线,待定只需一个点,正k 落在一三限,x 增大 y 在减,图
37、象上面任意点,矩形面积都不变,对称轴是角分线 x、y 的顺序可交换。二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小 y 轴看,的符号最简便,x 轴上数交点,a、b 同号轴左边抛物线平移a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。1对称点坐标:对称点坐标要记牢,相反数位置莫混淆,x 轴对称 y 相反, y 轴对称,x 前面添负号;原点对称最好记,横纵坐标变符号。22关于x轴对称y ax bxc关于x轴对称后,得到的解析式是y ax bxc;y axhk2y axhk关于x轴对称后,得到的解析式是;222y ax bxcy ax bxc;yy关于轴对称关于轴对称后,得
38、到的解析式是y axhk关于原点对称2y axhk关于y轴对称后,得到的解析式是;2y ax2bxc关于原点对称后,得到的解析式是y ax2bxc;y axhk关于顶点对称2关于原点对称后,得到的解析式是y axhk2b2y ax bxcy ax2bxc关于顶点对称后,得到的解析式是2a;2y axhk关于点m, n2关于顶点对称后,得到的解析式是y axhk2对称- 16 - / 18y axhk2m, ny axh2m关于点对称后,得到的解析式是22nka根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运
39、算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标与开口方向,再确定其对称抛物线的顶点坐标与开口方向,然后再写出其对称抛物线的表达式口诀- - y 反对 x,x 反对 y,都反对原点2自变量的取值围:分式分母不为零,偶次根下负不行;零次幂底数不为零,函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成 y=a(x+h)2+k 的形式,则用下面后的口诀:“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数 k 与 b,作
40、用之大莫小看,k 是斜率定夹角,b 与 y 轴来相见,k 为正来右上斜,x 增减 y 增减;k 为负来左下展,变化规律正相反;k 的绝对值越大,线离横轴就越远。二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、 大小由 a 断,c 与 y 轴来相见,b 的符号较特别, 符号与 a 相关联; 顶点位置先找见, y 轴作为参考线,左同右异中为 0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k
41、 为正,图在一、三(象)限;k 为负,图在二、四(象)限;图在一、 三函数减,两个分支分别减; 图在二、 四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。函数学习口决:正比例函数是直线,图象一定过原点,k 的正负是关键,决定直线的象限,负 k 经过二四限,x 增大 y 在减,上下平移 k 不变,由引得到一次线,向上加b 向下减,图象经过三个限,两点决定一条线,选定系数是关键;反比例函数双曲线,待定只需一个点,正k 落在一三限,x 增大 y 在减,图象上面任意点,矩形面积都不变,对称轴是角分线 x、y 的顺序可交换;二次函数抛物线,选定需要三个点,a 的正负开口判,c 的大小 y 轴看,的符号最简便,x 轴上数交点,a、b 同号轴左边抛物线平移a 不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。求定义域:求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 40m钢桥课程设计
- 马戏团合作合同责任协议
- 旅游合同中加上班级的条款
- 管理经济学就业规划
- 针刀治疗腕管综合症
- 乙肝病毒性肝炎的药物治疗
- 塑料模具课程设计全套
- 宠物特效课程设计
- 艾滋病防控宣传
- 大班无土栽培课程设计
- 电力行业锅炉维护保养方案
- 2024年医院满意度调查工作制度(三篇)
- 腰穿术护理常规
- 农业智能装备市场研究
- 2026届高三政治一轮复习实操策略研讨
- 2024年邻居公用围墙协议书模板
- 9 古诗三首《题西林壁》(教学设计)2024-2025学年统编版语文四年级上册
- 2024年二级建造师继续教育考核题及答案
- 2024年全国营养师技能大赛(云南赛区)理论考试原题库(含答案)
- 2024年武汉仲裁委员会招考高频500题难、易错点模拟试题附带答案详解
- 2024人形机器人产业半年研究报告
评论
0/150
提交评论