不等式范文.版块九.不等式的综合问题.学生版_第1页
不等式范文.版块九.不等式的综合问题.学生版_第2页
不等式范文.版块九.不等式的综合问题.学生版_第3页
不等式范文.版块九.不等式的综合问题.学生版_第4页
不等式范文.版块九.不等式的综合问题.学生版_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、不等式的综合问题典例分析【例1】 若实数、满足,则称比远离 若比远离,求的取值范围; 对任意两个不相等的正数、,证明:比远离; 已知函数的定义域任取,等于和中远离的那个值写出函数的解析式,并指出它的基本性质(结论不要求证明)【例2】 设(且),是的反函数设关于的方程求在区间上有实数解,求的取值范围;当(为自然对数的底数)时,证明:;当时,试比较与4的大小,并说明理由【例3】 某港口要将一件重要物品用小艇送到一艘正在航行的轮船上在小艇出发时,轮船位于港口北偏西且与该港口相距海里的处,并以海里/小时的航行速度沿正东方向匀速行驶假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇

2、若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? 假设小艇的最高航行速度只能达到海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由【例4】 设,是平面直角坐标系上的两点,现定义由点到点的一种折线距离为对于平面上给定的不同的两点, 若点是平面上的点,试证明 在平面上是否存在点,同时满足 若存在,请求出所有符合条件的点,请予以证明【例5】 设,称为,的调和平均数如图,为线殴上的点,且,为中点,以为直径作半圆过点作的垂线,垂足为连结,过点作的垂线,垂足为则图中线段的长度是,的算术平均数,线段 的长度是,的几何平均数,线段 的长度是,

3、的调和平均数【例6】 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:,若不建隔热层,每年能源消耗费用为8万元设为隔热层建造费用与20年的能源消耗费用之和求的值及的表达式;隔热层修建多厚对,总费用达到最小,并求最小值【例7】 已知,均为正数,证明:,并确定,为何值时,等号成立【例8】 设函数画出函数的图像;若不等式的解集非空,求的取值范围【例9】 经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/小时)与汽车的平均速

4、度(千米/小时)之间的函数关系为:在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到千辆/小时)若要求在该时段内车流量超过千辆/小时,则汽车的平均速度应在什么范围内?【例10】 某种汽车购车费用是万元,每年使用的保险费、养路费、汽油费和约为万元,年维修费第一年是万元,以后逐年递增万元问这种汽车使用多少年报废最合算?(最佳报废时间也就是年平均费用最低的时间)【例11】 如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为,四周空白的宽度为,两栏之间的中缝空白的宽度为,怎样确定广告的高与宽的尺寸(单位:),能使矩形广告面积最

5、小?【例12】 如图,为处理含有某种杂质的污水,要制造一底宽为米的无盖长方体沉淀箱污水从孔流入,经沉淀后从孔流出设箱体长度为米,高度为米已知流出的水中,杂质的质量分数与的乘积成反比现有制箱材料平方米,问当各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(孔的面积忽略不计) 【例13】 设计一幅宣传画,要求画面面积为,画面的宽与高的比为,画面的上下各留的空白,左右各留的空白,问怎样确定画面的高与宽的尺寸,能使宣传画所用纸张面积最小?如果,那么为何值时,能使宣传画所用纸张面积最小?【例14】 某单位用木料制作如图所示的框架, 框架的下部是边长分别为(单位:)的矩形上部是等腰直角三角形 要求框架

6、围成的总面积 问分别为多少(精确到001m) 时用料最省?【例15】 某村计划建造一个室内面积为的矩形蔬菜温室在温室内,沿左右两侧与后侧内墙各保留宽的通道,沿前侧内墙保留宽的空地当矩形温室的边长各为多少时?蔬菜的种植面积最大最大种植面积是多少?【例16】 对个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:为,要求清洗完后的清洁度为有两种方案可供选择,方案甲:一次清洗;方案乙: 分两次清洗该物体初次清洗后受残留水等因素影响,其质量变为设用单位质量的水初次清洗后的清洁度是,用单位质量的水第二次清洗后的清洁度是,其中是该物体初次清洗后的清洁度分别求出方案甲以及时方案乙的用水量,并比较哪一种方案用水量较少;若采用方案乙,当时,如何安排初次与第二次清洗的用水量,使总用水量最小? 【例17】 按照某学者的理论,假设一个人生产某产品的单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为现假设甲生产、两种产品的单件成本分别为元和元,乙生产、两种产品的单件成本分别为元和元,设产品、的单价分别为元和元,甲买进与卖出的综合满意度为,乙卖出与买进的综合满意度为;求和关于、的表达式;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论