结构力学作业及答案_第1页
结构力学作业及答案_第2页
结构力学作业及答案_第3页
结构力学作业及答案_第4页
结构力学作业及答案_第5页
已阅读5页,还剩119页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1123ADEFGBC2-1(b)2AFCDHEGBACB2-2(b)3AFCEDBIHG2-4(e)4FACDBEIHGAFCEDBIHG5(2,3)(1,3)ADCB(1,2)2-8(a)6(1,2)(1,3)(2,3)2-8(b)7ACHGFEDBIJGFCDABHEIJ(1,2)(2,3)(1,3)2-10(a)8lPF41ABClPF41PFl/2l/29lPF41ABClPF41lPF41ABClPF41ABCBACPF4/FPllPF41ABClPF41PFlPF41lPF41102q41lABClPF41PFl/2l/211BACPF4/FPllPF41ABCABC2q41lA

2、BClPF412q41lABClPF41PFlPF412Pq81F83ll 2q41l12ABCmkN.22m2mmkN /32mD13ABCmkN.22m2mmkN /32mDBmkN /3DBDFQABCmkN /3mkNql.6812ABCmkN.2DmkN.6mkNql.5 . 1812142k Nm4k N1k N/m1m1m1m2m2m1m4m1m1m1m4mABCDEFGH4k NABCDEFG1k N/mH2k NmG1k N/mHkNFRH125. 3kNFRG875. 1CD2k NmkNFXD0kNFYD1kNFXC0kNFYC1EFkNFRF094. 2kNFRE781

3、. 04k NABkNFRB75. 0kNFRA25. 23-5(b)152k Nm4k N1k N/m1m1m1m2m2m1m4m1m1m1m4mABCDEFGHABGH0.51111.87514.5ABGH110.2192.2151.8752.251.75(-)(-)(+)(+)16ABCDABCDABCDqaa/2ABaaqCDqaFAXqaFAY85qaFRC8173-7(a)(+)(-)qa.50(+)(+)qa85qaqa85qa813+281qa2qa2qa173-8(c)BCDaaqEAaaqaFEX32qaFAY32qaFEY32qaFAX34BCDEA232qa232qa2

4、32qa232qa265qaM图BCDEAqa32qa32qa32qa32qa34(+)(-)(-)(+)FQ图BCDEAqa32qa32qa32qa32(-)(-)(+)FN图183-11BCDlEAlPFPFllllHFG0REF0AXFBCDEAPFPFHFGPAYFF2PCXFFlFMPCPREFF2BCDEAlFPHFGlFPlFPlFPlFP2196a2aabaPF2PFABCDFGHIJKLabPF2PFabPF2PFPRFFF65PXLFF613PNaFF265PNbFF353-14(a)MNOPQ203-17(a)ACBED3m3m4m4m8k N4k N4k NFFGACB

5、EDFFG0003253535320320320344421M图 haP2P2Paa2aPh2Ph2PhPhPhPh2Ph2Ph22习题习题3-2 (a)qABCM(+)(-)FQM23q(b)(+)(-)FQM24ABFQM(+)(-)(-)25FQM(+)(-)(-)(d)26(-)FQM(e)(+)(-)27(a)习题习题3-3、3-4部分部分qa2q(b)28qq(d)(c)(e)qh/229q(f)(h)(g)30MABC(i)MABC(j)31kLL323-4a(b)33ABCABCq(c)(e)(d)34ABCfgqih353-18(f)4k NA3m3m3m3m3m2m2k N

6、2k N1k N1k N41231.5m 1.5m2mBC4k N4123122331363-18(f)0AMkNFN542k N1k N2k N1k NA4NF0934353XNF0BM4k N3XNF3YNF3B4NF313XNFkNFN21. 13kNFYN17. 135 .103130XF372XNFkNFN3 . 324k N2k N2k N1k N23YNF2XNF2XNF3YNF31NF1k NC0CMkNFN83. 21373-19(b)6m6m2m2m3mq=1k N/mABCDEFG383-19(b)q=1k N/mACDFCXFNFDXFNFDYFCYFRAF0AM0CY

7、F6NFDXF9NFDYF)(6kNFCXkNFRA15NDAFDNFDXFNFDYFNDCXFNDCYFkNFNDCX6kNFNDCY3kNFNDA12ARAFQACFNACFNDAFkNFQAC30NACF394.5ABCDEFG4.5HM图IABCFGFN图-12k N06k N9k N6k N3k NDABCHFQ图IkN3kN3kN3kN3403-21FP4m4m4m4mf=4mABCDExyFPABCDEyHFVAFVBFHF)(41PVBFF0AM0BM)(43PVAFFPCHFfMF210(a)41)(41PVBFF)(43PVAFFPCHFfMF2103)1216(12164

8、42Ey5 . 0tandxdyE4326E894. 0cos447. 0sinEE0sincos0EHEQQEFFFPEHEQNEF.cosFsinFF33500FPABCDEyHFVAFVBFHF5 . 0tandxdyD894. 0cos447. 0sinDDPPPDHDQDLLQDFFFFFF447. 0447. 02894. 043sincos0PDHDQDRRQDFFFF447. 0sincos0PDHDQDLLNDFFFF782. 0cossin0(b)(c)PDHDQDRRNDFFFF335. 0cossin042FP=1edABCEFDH4-2cba4m4m43ABCDb4-

9、3caFP=1ElK442k Nm4k N1k N/m1m1m1m2m2m1m4m1m1m1m4mABCDEFGH3-5(b)453-17(a)10等段,每段长2m2m46ABCDABCDABCDqaa/2ABaaqCDqaFAXqaFAY85qaFRC8173-7(a)473-17(a)ACBED3m3m4m4m8k N4k N4k NFFGACBEDFFG00032535353203203203444482k Nm4k N1k N/m1m1m1m2m2m1m4m1m1m1m4mABCDEFGH4k NABCDEFG1k N/mH2k NmG1k N/mHkNFRH125. 3kNFRG87

10、5. 1CD2k NmkNFXD0kNFYD1kNFXC0kNFYC1EFkNFRF094. 2kNFRE781. 04k NABkNFRB75. 0kNFRA25. 23-5(b)49AEBCFDabcdeLLPF =1P4-2 用静力法求A点支座反力、B点剪力、E点弯矩 和剪力、C 、 D点的支座反力以及 F点的弯矩和剪力 的影响线。1A点支座反力的影响线1B点剪力的影响线labE点弯矩的影响线lblaE点剪力的影响线50AEBCFDabcdeLLPF =1P4-2 用静力法求A点支座反力、B点剪力、E点弯矩 和剪力、C 、 D点的支座反力以及 F点的弯矩和剪力 的影响线。D点支座反力的影

11、响线1lc1C点支座反力的影响线lc151AEBCFDabcdeLLPF =1P4-3 用静力法求A点支座反力、B点剪力、E点弯矩 和剪力、C 、 D点的支座反力以及 F点的弯矩和剪力 的影响线。ldeF点的弯矩的影响线lceF点剪力的影响线ldlelc52P4-3 用静力法求刚架中A点的弯矩和竖向支座反力以及K点的弯矩和剪力的影响线。ABKCDELbcapF=1A点的弯矩的影响线blclbc1A点的竖向支座反力的影响线53P4-4 用静力法求刚架中A点的弯矩和竖向支座反力以及K点的弯矩和剪力的影响线。ABKCDELbcapF=1K点的弯矩的影响线bacabc1K点的剪力的影响线54P4-4

12、用机动法求E点的弯矩、B点左、右截面的剪力的影响线。AEBCD1m 1m2m2m2mpF=1E点的弯矩的影响线3232313231B点左截面的剪力的影响线11B点右截面的剪力的影响线55P4-7 用静力法作图示静定多跨梁A、C点支座反力、 B点左、右截面的剪力和 F点及G点的弯矩和 剪力的影响线。AFB H GICDE12m2m11114m14mA点支座反力的影响线451414514141C点支座反力的影响线41141B点左截面的剪力的影响线56P4-7 用静力法作图示静定多跨梁A、C点支座反力、 B点左、右截面的剪力和 F点及G点的弯矩和 剪力的影响线。AFB H GICDE12m2m111

13、14m14m1B点右截面的剪力的影响线F点弯矩的影响线21121F点剪力的影响线4121412157P4-7 用静力法作图示静定多跨梁A、C点支座反力、 B点左、右截面的剪力和 F点及G点的弯矩和 剪力的影响线。AFB H GICDE12m2m11114m14mG点弯矩的影响线21G点 剪力的影响线212158P4-8用静力法作图示静定多跨梁A 、B点支座反力 和A点弯矩的影响线。D1PFmm12112AEBFGCJIHA 点支座反力的影响线1DAEBGCJIH159P4-8用静力法作图示静定多跨梁A 、B点支座反力 和A点弯矩的影响线。D1PFmm12112AEBFGCJIHB点支座反力的影

14、响线2DAEBGCJIH60P4-8用静力法作图示静定多跨梁A 、B点支座反力 和A点弯矩的影响线。D1PFmm12112AEBFGCJIHA点弯矩的影响线DABGCJIH2261 P4-9用静力法作图示桁架1、2、3杆轴力的影响线。(荷载分为上承、下承两种情况)。ABCDEFGHIJK12310 x 2m2m1PFABCDEFIABCDEF2252.上承1杆轴力的影响线62 P4-9用静力法作图示桁架1、2、3杆轴力的影响线。(荷载分为上承、下承两种情况)。ABCDEFGHIJK12310 x 2m2m1PFABCDEFIABCDEF42.上承3杆轴力的影响线63 P4-9用静力法作图示桁架

15、1、2、3杆轴力的影响线。(荷载分为上承、下承两种情况)。ABCDEFGHIJK12310 x 2m2m1PFABCDEFIABCDEF221上承2杆轴力的影响线22125225264 P4-9用静力法作图示桁架1、2、3杆轴力的影响线。(荷载分为上承、下承两种情况)。ABCDEFGHIJK12310 x 2m2m1PFAFGHIJKCIAF2252.下承1杆轴力的影响线GHIJK65 P4-9用静力法作图示桁架1、2、3杆轴力的影响线。(荷载分为上承、下承两种情况)。ABCDEFGHIJK12310 x 2m2m1PFAFGHIJKCIAF42.下承3杆轴力的影响线281.GHIJK66 P

16、4-9用静力法作图示桁架1、2、3杆轴力的影响线。(荷载分为上承、下承两种情况)。ABCDEFGHIJK12310 x 2m2m1PFAFGHIJKCI下承2杆轴力的影响线AF2212212103GHIJK67 P4- 15用影响线求A、B处支座反力和C处剪力、弯矩。q=10 kN/mM=40k N.m1m3m2mABCD211ABCD下A 处支座反力影响线1PF41ABCD下A 处支座反力影响线1MkN)(FRA541402122114211068 P4- 15用影响线求A、B处支座反力和C处剪力、弯矩。q=10 kN/mM=40k N.m1m3m2mABCD231ABCD下B 处支座反力影

17、响线1PFkN)(FRB554140236211041ABCD下B 处支座反力影响线1M69 P4- 15用影响线求A、B处支座反力和C处剪力、弯矩。q=10 kN/mM=40k N.m1m3m2mABCD下C处剪力影响线41ABCD下C处剪力影响线1MkN)(FQC541402212114121343211021ABCD1PF414370 P4- 15用影响线求A、B处支座反力和C处剪力、弯矩。q=10 kN/mM=40k N.m1m3m2mABCDm.kN)(MC0414022121443211021ABCD下C处弯矩影响线1PF4341ABCD下C处弯矩影响线1M4371 P4- 17

18、两台吊车如图所示,试求吊车梁的 的荷载最不利位置,并计算其最大值(和最小值)。的影响线2QCCFM 、ABC3m6m3.5m1.5m3.5mkN82kN82kN82kN82ABCCM72 P4- 17 两台吊车如图所示,试求吊车梁的 的荷载最不利位置,并计算其最大值(和最小值)。的影响线2QCCFM 、ABC3m6m3.5m1.5m3.5mkN82kN82kN82kN82ABCCMm.kN).(MCMAX314654261228273 P4- 17 两台吊车如图所示,试求吊车梁的 的荷载最不利位置,并计算其最大值(和最小值)。的影响线QCCFM 、ABC3m6m3.5m1.5m3.5mkN82

19、kN82kN82kN82ABCQCF3132kN.).(FQCMAX7104654326132328274 P4- 17 两台吊车如图所示,试求吊车梁的 的荷载最不利位置,并计算其最大值(和最小值)。的影响线QCCFM 、ABC3m6m3.5m1.5m3.5mkN82kN82kN82kN82ABCQCF3132kN.)(FQCMIN3273182755-2 设图示支座A有给定位移 。试求K 点竖向位移 、水平位移 和截面转角 。、YXVHAK3aaaXYAK1PF0XAF1YAFaMA30311aYV aYV3765-2 设图示支座A有给定位移 。试求K 点竖向位移 、水平位移 和截面转角 。

20、、YXVHAK3aaaXYAK1PF1XAF0YAFaMA011aXHaXH775-2 设图示支座A有给定位移 。试求K 点竖向位移 、水平位移 和截面转角 。、YXVHAK3aaaXY011AK1m0XAF0YAF1AM( )785-8(a)用积分法求图中梁的跨中挠度(忽略剪切变形的影响)。ABqEIlABl41图M1PFAB281ql图PMq 42384524185281321qlEIllqlEI795-8(b)用积分法求图中梁的跨中挠度(忽略剪切变形的影响)。ABl41图M1PF EIlFlllFEIPP48241322412113ABEIl/2l/2PFABlFP41图PMPF805-

21、11试求图示结构结点C的水平位移 ,设各杆的EA相等。 aFEAaFaFEAEAlNNPPPP12212221ABCDaaPFCABCDPF00PFPFPF2图PNABCD00102图N1815-18试求图示梁在截面C和E的挠度,已知 ,I1=6560cm4 I2=12430cm4 。ACEDB30kN30kN2.0m2.0m2.0m2.0m2I1I1IMPa.E510022327261010101m/kNcm/kNm/NMPamkN 60ACEDBmkN 60图PM cm.EIEI.EI.EI.EI57124080506051605060251602641503226021151322602

22、1121211m.51ACEDB1PF图Mm.50825-18试求图示梁在截面C和E的挠度,已知 ,I1=6560cm4 I2=12430cm4 。ACEDB30kN30kN2.0m2.0m2.0m2.0m2I1I1IMPa.E51002mkN 60ACEDBmkN 60图PM cm.EIEIEIEI0623608021602601602260262121322602112121mkN 2ACEDB1PF图MmkN 183/kN m2040kN2m4m4m2m/kN m2040kNC习题5-20:求C点挠度 EI=2108kN.cm 221208040101040解:设单位载荷状态1作MP、M

23、 图8412080401010402(CVEI 1111221404180414401232332()() 121121804124 12021233233) 1221120222 1022332855-22试求图示刚架A点和D点的竖向位移。已知梁的惯性距为2I, 柱的惯性距为I。ADBCq2II2.0m2.0m3.0mADBCq8q8q8图PMADBC4 mM图m1PF44 qEIqEIqEIAV1128431443483121865-22试求图示刚架A点和D点的竖向位移。已知梁的惯性距为2I, 柱的惯性距为I。ADBCq2II2.0m2.0m3.0mADBC2 mM图m221PF qEI.

24、qEIq.qqEIDV67538231125032231832222121ADBCq8q8q8图PMq2q.5087ABDCEq6.0m6.0m6.0m5-23试求图示三铰刚架E点的水平位移和截面B的转角。设各杆 EI 等于常数。ABDCEq.51q.51q.51q.54q9q9q9q9q.54图PMABDCE50.31PF50.50.50.333 mM图qEIq.EIqEI24332165432143326921188ABDCEq6.0m6.0m6.0m5-23试求图示三铰刚架E点的水平位移和截面B的转角。设各杆 EI 等于常数。ABDCEq.51q.51q.51q.54q9q9q9q9q.

25、54图PMqEI.q.EI.qEI.qEI54950216543215032131692113503269211ABDCE1PF12150. mM图112112112150.50.50.1895-29设图示三铰拱内部升温30度,各杆截面为矩形,截面高度h相同。试求C点的竖向位移 。ABC+30度6.0m6.0m6.0mCABC50.31PF50.50.50.3 mM图ABC50.31PF50.50.50.3图N50.50.50. 180108046501546321300h.hdsFtdsMhtN906-1 确定下列结构的超静定次数。(a)1X2X1X2X(d)1X3X2X916-2 用力法计

26、算图示结构,作M、FQ图。ABa1I12I=kI2IPF1XABPF解: (1)选取基本体系(2)列出力法方程01111PX(3)求系数和自由项lalFPABPFPM13323133222211131333221122261EIaklEIaEIalaaEIalalalEI 121162261EIalalFalFalalFalEIPPPP11XABl1Ma926-2 用力法计算图示结构,作M、FQ图。(4)求多余未知力 12162EIalalFPP1331131EIakl 06231121133EIalalFXEIaklP 3321122aklalalFXP(5)M图(6)FQ图ABlXalFP

27、1aX1图M图QFAB1XFP1X936-3 用力法计算图示结构,作M图。解: (1)选取基本体系(2)列出力法方程0022221211212111PPXXXX(3)求系数和自由项(d)ACBqEI=常数aaACBq1X2X94(3)求系数和自由项ACBq221qa221qa图PM12XACBqaa2MEIa3311ACB11X1MaEIa34322EIa232112EIqaP441EIqaaqaaqaaaEIP8543213121422295(4)M图08534204234231342313EIqaXEIaXEIaEIqaXEIaXEIaACBq2141qaM2141qa2281qa2831

28、qaX 732qaX966-4 用力法计算图示排架,作M图。解: (1)选取基本体系(2)列出力法方程(3)求系数和自由项(a)q=20 kN/mABCDII12 m6 m01111PX1Xq=20 kN/mABCDII97(3)求系数和自由项EIEI1446326621211EIEIP324064336063111q=20 kN/mABCDIImkN.360PM11XABCDIIm6m61M032401441EIXEIkN.X5221(4)M图ABCDIIm.kN225MmkN.135986-5 用力法计算图示桁架,各杆EA=常数。解: (1)选取基本体系(2)列出力法方程(3)求系数和自由

29、项(a)01111PXABC2 a2 aaPFPFABCPFPF1X99(3)求系数和自由项EAaaaaEA3222112221422212211 EAaFaFaFaFEAPPPPP2222122212222211 02223221EAaFXEAaP PF.X17311(4)FN图ABCPFPFkNFNP图00PFPF2PF2PFPFDEABC11X2222222212121ED图1NFNFABCPF.1730PF.4140PF.4140PF.5850PF.5850PF.8290PF.82901006-6 图示一组合式吊车梁,上弦横梁截面 EI=1400kN m2,腹杆和下弦的EA=2.561

30、05kN。计算各杆内力,作横梁的弯矩图。解: (1)选取基本体系(2)列出力法方程(3)求系数和自由项01111PXAEFBCD2 m2 m2 m3.5 m1 mPFPF=7.6kNAEFBCDPFPF1X101(3)求系数和自由项图PMAEFBCDPFPFmkN.5 . 9mkN.5 . 9kN6 . 7kN6 . 7图NPFAEFBCDPFPF0kN6 . 7kN6 . 700000AEFBCD11X2521121251图1NF00图1MAEFBCD11X00m625. 0m625. 0m1m1 kN/m.EIEAdsEIMEAlFN0024120211213221211212121252

31、51222212111102(3)求系数和自由项图PMAEFBCDPFPFmkN.5 . 9mkN.5 . 9kN6 . 7kN6 . 7图NPFAEFBCDPFPF0kN6 . 7kN6 . 700000AEFBCD11X2521121251图1NF00图1MAEFBCD11X00m625. 0m625. 0m1m1m.EIdsEIMMEAlFFPNNPP02537602159175059162502162503259251211111103(4)内力图01111PXkN.X52101AEFBCD5210.5210.265.265.7811.7811.kNFN图AEFBCD932.021.m

32、kNM图932.021.1046-8 试作下列图示对称刚架的M图。(d)ABCDEFIIII2 I2 I9 m6 m6 mPFABCDEFI2PF2PFABCDEFI2PF2PF1056-8 试作下列图示对称刚架的M图。解: (1)选取基本体系(2)列出力法方程(3)求系数和自由项01111PX(d)ABCDEFIIII2 I2 I9 m6 m6 mPFABCDEF2PF2PF1X106(3)求系数和自由项EIEIEI75.30345 . 4325 . 45 . 4212125 . 465 . 4111PF34ABCDEF2PF2PF图PM2PF2PFPF34PF3PF3PF3PF3PF6PF

33、6ABCDEF5 . 4图1M011X5 . 45 . 45 . 40005 . 45 . 4EIFFEIFEIPPPP5 .12125 . 4325 . 46212125 . 4632111107(4)M图01111PXPFX4 . 01ABCDEFPF8 . 1图MPF3PF3PF2 . 4PF8 . 1PF2 . 1PF2 . 1PF2 . 41086-18 梁B端下沉c,作梁的M图和FQ图。解: (1)选取基本体系(2)列出力法方程(3)求系数和自由项ABEIclABEI1X2X0222121212111XXcXXAB11Xl图1MAB12X11图2MEIl3311EIl222112E

34、Il22109(4)内力图02232122213XEIlXEIlcXEIlXEIl 3112lEIcX226lEIcX ( )AB26lEIc26lEIc图MAB312lEIc图QF312lEIc1106-20 图示梁上、下侧温度变化分别为+t1与+t2 ( t1 t2 ),梁截面高h,温度膨胀系数 。试求作M图和挠曲线方程。解: (1)选取基本体系(2)列出力法方程(3)求系数和自由项01111tXABEIl1t2tA1t2t1XBAB11Xl图1MEIl3311122102tttttt12221011221tthllhtdsFtdsMhtNt111(4) M图和挠曲线方程02312213t

35、thlXEIl 12123tthlEIXABhttEI2312xlhlttEI2312A1PFxBx112(4) M图和挠曲线方程ABA1PFhttEI2312xlhlttEI2312xBx 3212212121242123232611xlxhlttxhttxxlhlttEIhttEIxxEIdxhtMMdxMEIxy1137-2 试写出图示杆端弯矩表达式及位移法基本方程。解:(1)杆端弯矩表达式(2)位移法基本方程DDDAi.iqlM35452813812200DBDCDADMMMM(b)ABCD10kN2.5kN/mEI=常数4m4m4mm.kNMDC40410DDBiM4DBDiM24EIi 0357Di1147-2 试写出图示杆端弯矩表达式及位移法基本方程。解:(1)杆端弯矩表达式BBCiqlM231(e)AADiM4ADAiM2lEIi ABCDEFqLqiEI=常数lll2l2lAAEiM4AEAiM2AAFiqlM316320FAMBAABiiM24BABAiiM42BCBiqlM261(2)位移法基本方程00ABAFAEADAMMMMM01632152qliiBA00BABCBMMM031522qliiBA1157-2 试写出图示杆端

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论