版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省厦门市外国语学校高二数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“,”是“方程表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.3.已知是抛物线上的点,F是抛物线C的焦点,若,则()A1011 B.2020C.2021 D.20224.已知函数在区间上是增函数,则实数的取值范围是()A. B.C. D.5.直线关于直线对称的直线方程为()A. B.C. D.6.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.直线在轴上的截距为()A.3 B.C. D.8.已知函数,则函数在点处的切线方程为()A. B.C. D.9.已知等差数列满足,则等于()A. B.C. D.10.概率论起源于赌博问题.法国著名数学家布莱尔帕斯卡遇到两个赌徒向他提出的赌金分配问题:甲、乙两赌徒约定先赢满局者,可获得全部赌金法郎,当甲赢了局,乙赢了局,不再赌下去时,赌金如何分配?假设每局两人输赢的概率各占一半,每局输赢相互独立,那么赌金分配比较合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎11.等差数列的通项公式,数列,其前项和为,则等于()A. B.C. D.12.已知函数,在定义域内任取一点,则使的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知两平行直线与间的距离为3,则C的值是________.14.椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____15.等差数列前项之和为,若,则________16.若直线的方向向量为,平面的一个法向量为,则直线与平面所成角的正弦值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线y=f(x)在点(0,4)处的切线方程为(1)求a,b的值;(2)求f(x)的极大值18.(12分)已知抛物线的焦点与曲线的右焦点重合.(1)求抛物线的标准方程;(2)若抛物线上的点满足,求点的坐标.19.(12分)已知圆的方程为(1)求圆的圆心及半径;(2)是否存在直线满足:经过点,且_________________?如果存在,求出直线的方程;如果不存在,请说明理由从下列三个条件中任选一个补充在上面问题中并作答:条件①:被圆所截得的弦长最长;条件②:被圆所截得的弦长最短;条件③:被圆所截得的弦长为注:如果选择多个条件分别作答,按第一个解答计分20.(12分)已知数列{}的前n项和为,且2=3-3(n∈)(1)求数列{}的通项公式(2)若=(n+1),求数列{}的前n项和21.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.22.(10分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据双曲线的方程以及充分条件和必要条件的定义进行判断即可【详解】由,可知方程表示焦点在轴上的双曲线;反之,若表示双曲线,则,即,或,所以“,”是“方程表示双曲线”的充分不必要条件故选:A2、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D3、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C4、D【解析】由在上恒成立,再转化为求函数的取值范围可得【详解】由已知,在上是增函数,则在上恒成立,即,,当时,,所以故选:D5、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C6、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B7、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A8、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C9、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.10、A【解析】利用独立事件计算出甲、乙各自赢得赌金的概率,由此可求得两人各分配的金额.【详解】甲赢得法郎的概率为,乙赢得法郎的概率为,因此,这法郎中分配给甲法郎,分配给乙法郎.故选:A.11、D【解析】根据裂项求和法求得,再计算即可.【详解】解:由题意得====所以.故选:D12、A【解析】解不等式,根据与长度有关的几何概型即可求解.【详解】由题意得,即,由几何概型得,在定义域内任取一点,使的概率是.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据两条平行直线之间的距离公式即可得解.【详解】两平行直线与间的距离为3,所以,所以故答案为:14、【解析】先证明则四边形OMPN是平行四边形,进而根据椭圆定义求出a,再求出c,最后求出答案.【详解】因为M,O,N分别为的中点,所以,则四边形OMPN是平行四边形,所以,由四边形OMPN的周长为4可知,,即,则,于是的周长是.故答案为:.15、【解析】直接利用等差数列前项和公式和等差数列的性质求解即可.【详解】由已知条件得,故答案为:.16、【解析】根据空间向量夹角公式进行求解即可.【详解】设与的夹角为,直线与平面所成角为,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)a=4,b=4(2)【解析】(1)由题意得到关于的方程组,求解方程组即可求出答案.(2)结合(1)中求得的函数解析式,求导得到的单调性,可得当x=-2时,函数f(x)取得极大值.【小问1详解】由已知得f(0)=4,f′(0)=4,故b=4,a+b=8从而a=4,b=4【小问2详解】由(1)知,,令f′(x)=0得,x=-ln2或x=-2从而当时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减当x=-2时,函数f(x)取得极大值,极大值为18、(1);(2)或.【解析】(1)求出双曲线的右焦点坐标,可求出的值,即可得出抛物线的标准方程;(2)设点,由抛物线的定义求出的值,代入抛物线的方程可求得的值,即可得出点的坐标.【详解】(1)由双曲线方程可得,,所以,解得.则曲线的右焦点为,所以,.因此,抛物线的标准方程为;(2)设,由抛物线的定义及已知可得,解得.代入抛物线方程可得,解得,所以点的坐标为或.19、(1)圆心为,半径为;(2)答案见解析.【解析】(1)写出圆标准方程即得解;(2)选择条件①:直线应过圆心即直线过点和,即得解;选择条件②:直线应与垂直,求出直线的方程即得解;选择条件③:不存在满足条件的直线.【小问1详解】解:由圆的方程整理可得,所以圆心为,半径为.小问2详解】选择条件①:若直线被圆所截得的弦长最长,则直线应过圆心即直线过点和,所以直线的斜率为,则直线的方程为.选择条件②:若直线过点被圆所截得的弦长最短,则直线应与垂直.又,所以.故直线方程为.选择条件③:经过点的直线被圆所截得的最短弦长,由于,所以不存在满足条件的直线.20、(1);(2).【解析】(1)利用的关系可得,即可知为等比数列,写出等比数列通项公式即可.(2)由(1)得,利用错位相减求和法即可求出前n项和.【小问1详解】当时,,解得,当时,,则,即,又,则,∴,故是以为首项,以3为公比的等比数列,∴数列的通项公式为;【小问2详解】由(1)知,所以,所以①,则②,①-②,得,整理,得,,所以.21、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.22、(1)(2)【解析】(1)由对数函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 狼获奖课件教学课件
- 统计分析软件模拟试题三及答案
- 飞向太空的航程说课稿
- 队列口令说课稿
- 适合小班课件教学课件
- 怎样评价课件教学课件
- 南京工业大学浦江学院《公益营销》2021-2022学年第一学期期末试卷
- 南京工业大学浦江学院《筹资原理和技巧》2022-2023学年第一学期期末试卷
- 秸秆打捆协议书(2篇)
- 南京工业大学《应用统计学》2023-2024学年第一学期期末试卷
- 2024版专升本宣讲课件完整版
- 2025数学步步高大一轮复习讲义人教A版复习讲义含答案
- 车站调度员技能大赛理论考试题库(单选、多选题)
- 2024-2030年桦树汁行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 创新创业心智模式探索智慧树知到期末考试答案章节答案2024年天津农学院
- 2024年九年级化学上册 第6单元 碳和碳的氧化物教案 (新版)新人教版
- 2024详解新版《公司法》课件
- 医院法律、法规培训课件
- 2024年高考作文真题解读(立意+提纲+范文+总评)
- 美沙酮门诊管理新规制度
- 2024年河南省信阳市新县中考一模数学试题 【含答案解析】
评论
0/150
提交评论