高考数学试卷解析版山东卷文理两份_第1页
高考数学试卷解析版山东卷文理两份_第2页
高考数学试卷解析版山东卷文理两份_第3页
高考数学试卷解析版山东卷文理两份_第4页
高考数学试卷解析版山东卷文理两份_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(山东卷)2011年普通高等学校招生全国统一考试数学(文) 解析版注意事项: 1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上并将准考证号条形码粘贴在答题卡上的指定位置,用2b铅笔将答题卡上试卷类型b后的方框涂黑。 2选择题的作答:每小题选出答案后,用2b铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。咎在试题卷、草稿纸上无效。 3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。 4考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。第卷(共60分)一、选择题:本大题共l

2、0小题每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的.1.设集合 m =x|(x+3)(x-2)0,n =x|1x3,则mn =(a)1,2) (b)1,2 (c)( 2,3 (d)2,3【答案】a【解析】因为,所以,故选a.2.复数z=(为虚数单位)在复平面内对应的点所在象限为(a)第一象限 (b)第二象限 (c)第三象限 (d)第四象限【答案】d【解析】因为,故复数z对应点在第四象限,选d.3.若点(a,9)在函数的图象上,则tan=的值为(a)0 (b) (c) 1 (d) 【答案】d【解析】由题意知:9=,解得=2,所以,故选d.4.曲线在点p(1,12)处的切

3、线与y轴交点的纵坐标是 (a)-9 (b)-3 (c)9 (d)155.已知a,b,cr,命题“若=3,则3”,的否命题是(a)若a+b+c3,则3 (b)若a+b+c=3,则0)在区间上单调递增,在区间上单调递减,则= (a) (b) (c) 2 (d)3【答案】b【解析】由题意知,函数在处取得最大值1,所以1=sin,故选b.7.设变量x,y满足约束条件,则目标函数的最大值为 (a)11 (b)10 (c)9 (d)8.5【答案】b【解析】画出平面区域表示的可行域如图所示,当直线平移至点a(3,1)时, 目标函数取得最大值为10,故选b.8.某产品的广告费用x与销售额y的统计数据如下表 根

4、据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为(a)63.6万元 (b)65.5万元 (c)67.7万元 (d)72.0万元【答案】b【解析】由表可计算,因为点在回归直线上,且为9.4,所以, 解得,故回归方程为, 令x=6得65.5,选b.9.设m(,)为抛物线c:上一点,f为抛物线c的焦点,以f为圆心、为半径的圆和抛物线c的准线相交,则的取值范围是 (a)(0,2) (b)0,2 (c)(2,+) (d)2,+)【答案】c【解析】设圆的半径为r,因为f(0,2)是圆心, 抛物线c的准线方程为,由圆与准线相切知4r,因为点m(,)为抛物线c:上一点,所以有,又点m(,

5、)在圆 ,所以,所以,即有,解得或, 又因为, 所以, 选c.的距离为, 【解析】因为,所以令,得,此时原函数是增函数;令,得,此时原函数是减函数,结合余弦函数图象,可得选c正确.11.下图是长和宽分别相等的两个矩形给定下列三个命题:存在三棱柱,其正(主)视图、俯视图如下图;存在四棱柱,其正(主)视图、俯视图如下图;存在圆柱,其正(主)视图、俯视图如下图其中真命题的个数是 (a)3 (b)2 (c)1 (d)0【答案】a【解析】对于,可以是放倒的三棱柱;容易判断可以.12.设,是平面直角坐标系中两两不同的四点,若 (r),(r),且,则称,调和分割, ,已知点c(c,o),d(d,o) (c,

6、dr)调和分割点a(0,0),b(1,0),则下面说法正确的是(a)c可能是线段ab的中点 (b)d可能是线段ab的中点(c)c,d可能同时在线段ab上 (d) c,d不可能同时在线段ab的延长线上【答案】d【解析】由 (r),(r)知:四点,在同一条直线上,因为c,d调和分割点a,b,所以a,b,c,d四点在同一直线上,且, 故选d.第ii卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 .【答案

7、】16【解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为40=16.14.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=680,因为直线od的方程为,所以由得交点g的纵坐标为,又因为,且,所以,又由()知: ,所以解得,所以直线的方程为,即有,令得,y=0,与实数k无关,所以直线过定点(-1,0).(ii)假设点,关于轴对称,则有的外接圆的圆心在x轴上,又在线段ab的中垂线上,由(i)知点g(,所以点b(,又因为直线过定点(-1,0),所

8、以直线的斜率为,又因为,所以解得或6,又因为,所以舍去,即,此时k=1,m=1,e,ab的中垂线为2x+2y+1=0,圆心坐标为,g(,圆半径为,圆的方程为.综上所述, 点,关于轴对称,此时的外接圆的方程为.2011年普通高等学校全国统一考试(山东卷) 理科数学 解析版一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的的四个选项中,只有一个项是符合题目要求的。(1)设集合,则a. b. c. d. 解析:,答案应选a。(2)复数为虚数单位)在复平面内对应的点所在的象限为a.第一象限 b.第二象限 c.第三象限 d.第四象限解析:对应的点为在第四象限,答案应选d.(3)若点在函数

9、的图象上,则的值为a. b. c. d. 解析:,答案应选d.(4)不等式的解集是a. b. c. d. 解析:当时,原不等式可化为,解得;当时,原不等式可化为,不成立;当时,原不等式可化为,解得.综上可知,或,答案应选d。另解1:可以作出函数的图象,令可得或,观察图像可得,或可使成立,答案应选d。另解2:利用绝对值的几何意义,表示实数轴上的点到点与的距离之和,要使点到点与的距离之和等于10,只需或,于是当,或可使成立,答案应选d。(5)对于函数,“的图象关于轴对称”是“是奇函数”的a充分不必要条件 b.必要不充分条件 c.充要条件 d.即不充分也不必要条件解析:若是奇函数,则的图象关于轴对称

10、;反之不成立,比如偶函数,满足的图象关于轴对称,但不一定是奇函数,答案应选b。(6)若函数在区间上单调递增,在区间上单调递减,则a. b. c. d. 解析:函数在区间上单调递增,在区间上单调递减,则,即,答案应选c。另解1:令得函数在为增函数,同理可得函数在为减函数,则当时符合题意,即,答案应选c。另解2:由题意可知当时,函数取得极大值,则,即,即,结合选择项即可得答案应选c。另解3:由题意可知当时,函数取得最大值,则,结合选择项即可得答案应选c。(7)某产品的广告费用与销售额的统计数据如下表:广告费用(万元) 4 2 3 5销售额(万元) 49 26 39 54根据上表可得回归方程中的为9

11、.4,据此模型预报广告费用为6万元是销售额为a.6.6万元 b. 65.5万元 c. 67.7万元 d. 72.0万元解析:由题意可知,则,答案应选b。(8)已知双曲线的两条渐近线均和圆相切,且双曲线的右焦点为圆的圆心,则该双曲线的方程为a. b. c. d. 解析:圆,而,则,答案应选a。d.c.b.a.(9)函数的图象大致是解析:函数为奇函数,且,令得,由于函数为周期函数,而当时,当时,则答案应选c。(10)已知是上最小正周期为2的周期函数,且当时,则函数的图象在区间上与轴的交点的个数为a.6 b.7 c.8 d.9正(主)视图俯视图解析:当时,则,而是上最小正周期为2的周期函数,则,答案

12、应选b。 (11)右图是长和宽分别相等的两个矩形。给定三个命题:存在三棱柱,其正(主)视图、俯视图如右图;存在四棱柱,其正(主)视图、俯视图如右图;存在圆柱,其正(主)视图、俯视图如右图。其中真,命题的个数是a.3 b.2 c.1 d.0解析:均是正确的,只需底面是等腰直角三角形的直四棱柱,让其直角三角形直角边对应的一个侧面平卧;直四棱柱的两个侧面是正方形或一正四棱柱平躺;圆柱平躺即可使得三个命题为真,答案选a。 (12)设是平面直角坐标系中两两不同的四点,若,且,则称调和分割,已知平面上的点调和分割点,则下面说法正确的是a. c可能是线段ab的中点 b. d可能是线段ab的中点c. c,d可

13、能同时在线段ab上 d. c,d不可能同时在线段ab的延长线上解析:根据题意可知,若c或d是线段ab的中点,则,或,矛盾;开始输入非负整数l,m,n输出y结束若c,d可能同时在线段ab上,则则矛盾,若c,d同时在线段ab的延长线上,则,故c,d不可能同时在线段ab的延长线上,答案选d。二、填空题:本大题共4小题,每小题4分,共16分。(13)执行右图所示的程序框图,输入,则输出的y的值是 。解析:。答案应填:68.(14)若展开式的常数项为60, 则常数的值为 。解析:的展开式,令,答案应填:4.(15)设函数,观察:,根据上述事实,由归纳推理可得:当,且时, 。解析:,以此类推可得。答案应填

14、:。16.已知函数且。当时函数的零点为,则 。解析:根据,而函数在上连续,单调递增,故函数的零点在区间内,故。答案应填:2.三、解答题:本大题共6小题,共74分。17.(本小题满分12分) 在中,内角的对边分别为,已知,()求的值;()若,求的面积s。解:()在中,由及正弦定理可得,即则,而,则,即。另解1:在中,由可得由余弦定理可得,整理可得,由正弦定理可得。另解2:利用教材习题结论解题,在中有结论.由可得即,则,由正弦定理可得。()由及可得则,s,即。(18)(本题满分12分) 红队队员甲、乙、丙与蓝队队员a、b、c进行围棋比赛,甲对a、乙对b、丙对c各一盘。已知甲胜a、乙胜b、丙胜c的概

15、率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立。()求红队至少两名队员获胜的概率;()用表示红队队员获胜的总盘数,求的分布列和数学期望。解析:()记甲对a、乙对b、丙对c各一盘中甲胜a、乙胜b、丙胜c分别为事件,则甲不胜a、乙不胜b、丙不胜c分别为事件,根据各盘比赛结果相互独立可得故红队至少两名队员获胜的概率为.()依题意可知,;;.故的分布列为0123p0.10.350.40.15故.19. (本小题满分12分)在如图所示的几何体中,四边形为平行四边形,平面,()若是线段的中点,求证:平面;()若,求二面角的大小几何法:证明:(),可知延长交于点,而,则平面平面,即平面平面,于是三

16、线共点,若是线段的中点,而,则,四边形为平行四边形,则,又平面,所以平面;()由平面,作,则平面,作,连接,则,于是为二面角的平面角。若,设,则,为的中点,在中,则,即二面角的大小为。坐标法:()证明:由四边形为平行四边形, ,平面,可得以点为坐标原点,所在直线分别为建立直角坐标系,设,则,.由可得,由可得,,则,而平面,所以平面;()()若,设,则, ,则,设分别为平面与平面的法向量。则,令,则,; ,令,则,。于是,则,即二面角的大小为。20. (本小题满分12分)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列第一列第二列第三列第一行第二行第三行()求数

17、列的通项公式;()若数列满足:,求数列的前项和解析:()由题意可知,公比,通项公式为;()当时,当时故另解:令,即则故.21. (本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且假设该容器的建造费用仅与其表面积有关已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为()千元设该容器的建造费用为千元()写出关于的函数表达式,并求该函数的定义域;()求该容器的建造费用最小时的解析:()由题意可知,即,则.容器的建造费用为,即,定义域为.(),令,得.令即,(1)当时,当,函数为减函数,当时有最小值;(2)当时,当,;当时,此时当时有最小值。22. (本小题满分12分)已知动直线与椭圆:交于两不同点,且的面积,其中为坐标原点()证明:和均为定值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论