高考数学所有放缩技巧及不等式证明方法(构造法)_第1页
高考数学所有放缩技巧及不等式证明方法(构造法)_第2页
高考数学所有放缩技巧及不等式证明方法(构造法)_第3页
高考数学所有放缩技巧及不等式证明方法(构造法)_第4页
高考数学所有放缩技巧及不等式证明方法(构造法)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2012高考数学所有放缩技巧及不等式证明方法(构造法)总的来说,高考中与不等式有关的大题(主要是证明题)一般常用均值不等式、构造函数后用导数工具解、裂项相消等常见放缩法来解决。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:以下的所有放缩法中裂项相消法、均值不等式法放缩、二项分布法放缩以及函数放缩法最常用必须掌握,所以要先看这些方法。

2、其他的方法,如果有精力的话可以了解一下。如果真的掌握不了也足以应付高考。 一、裂项放缩 例1.(1)求的值; (2)求证:.解析:(1)因为,所以 (2)因为,所以常用放缩技巧(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (11) (12) (13) (14) (15) (15) 例2.(1)求证: (2)求证: (3)求证: (4) 求证:解析:(1)因为,所以 (2) (3)先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案 (4)首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证: 解析:一方面:因为,所以

3、 另一方面: 当时,当时,当时,所以综上有例4.(2008年全国一卷) 设函数.数列满足.设,整数.证明:. 解析:由数学归纳法可以证明是递增数列,故存在正整数,使,则,否则若,则由知,因为,于是例5.已知,求证: . 解析:首先可以证明: 所以要证 只要证: 故只要证,即等价于,即等价于而正是成立的,所以原命题成立.例6.已知,求证:.解析:所以 从而例7.已知,求证:证明: ,因为 ,所以 所以二、函数放缩 例8.求证:. 解析:先构造函数有,从而因为 所以 例9.求证:(1) 解析:构造函数,得到,再进行裂项,求和后可以得到答案 函数构造形式: ,例10.求证:解析:提示:函数构造形式:

4、 当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,所以有,相加后可以得到: 另一方面,从而有取有,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证: 解析:,叠加之后就可以得到答案 函数构造形式:(加强命题) 例13.证明: 解析:构造函数,求导,可以得到: ,令有,令有, 所以,所以,令有, 所以,所以 例14. 已知证明. 解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案)放缩思路:。于是, 即注:题目所给条件()为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论来放缩: ,即 例15.(2008年厦门市质检)

5、 已知函数是在上处处可导的函数,若在上恒成立. (i)求证:函数上是增函数; (ii)当; (iii)已知不等式时恒成立, 求证: 解析:(i),所以函数上是增函数 (ii)因为上是增函数,所以 两式相加后可以得到 (3) 相加后可以得到: 所以 令,有 所以 (方法二) 所以 又,所以 例16.(2008年福州市质检)已知函数若 解析:设函数 函数)上单调递增,在上单调递减.的最小值为,即总有而即令则 三、分式放缩 姐妹不等式:和 记忆口诀”小者小,大者大” 解释:看b,若b小,则不等号是小于号,反之.例19. 姐妹不等式:和也可以表示成为和解析: 利用假分数的一个性质可得 即 例20.证明

6、:解析: 运用两次次分式放缩: (加1) (加2) 相乘,可以得到: 所以有四、分类放缩 例21.求证: 解析: 例22.(2004年全国高中数学联赛加试改编) 在平面直角坐标系中, 轴正半轴上的点列与曲线(0)上的点列满足,直线在x轴上的截距为.点的横坐标为,.(1)证明4,; (2)证明有,使得对都有. 解析:(1) 依题设有:,由得: ,又直线在轴上的截距为满足 显然,对于,有 (2)证明:设,则 设,则当时,。所以,取,对都有:故有成立。 例23.(2007年泉州市高三质检) 已知函数,若的定义域为1,0,值域也为1,0.若数列满足,记数列的前项和为,问是否存在正常数a,使得对于任意正

7、整数都有?并证明你的结论。 解析:首先求出,故当时,因此,对任何常数a,设是不小于a的最小正整数,则当时,必有.故不存在常数a使对所有的正整数恒成立. 例24.(2008年中学教学参考)设不等式组表示的平面区域为,设内整数坐标点的个数为.设,当时,求证:. 解析:容易得到,所以,要证只要证,因为,所以原命题得证.五、迭代放缩 例25. 已知,求证:当时, 解析:通过迭代的方法得到,然后相加就可以得到结论 例26. 设,求证:对任意的正整数k,若kn恒有:|sn+ksn|0,b0,求证:解析: 因为a+b=1,a0,b0,可认为成等差数列,设,从而 例47.设,求证.解析: 观察的结构,注意到,

8、展开得,即,得证. 例48.求证:. 解析:参见上面的方法,希望读者自己尝试!)例42.(2008年北京海淀5月练习) 已知函数,满足:对任意,都有;对任意都有.(i)试证明:为上的单调增函数;(ii)求;(iii)令,试证明:. 解析:本题的亮点很多,是一道考查能力的好题. (1)运用抽象函数的性质判断单调性: 因为,所以可以得到, 也就是,不妨设,所以,可以得到,也就是说为上的单调增函数. (2)此问的难度较大,要完全解决出来需要一定的能力! 首先我们发现条件不是很足,尝试探索看看按(1)中的不等式可以不可以得到什么结论,一发现就有思路了! 由(1)可知,令,则可以得到,又,所以由不等式可

9、以得到,又,所以可以得到 接下来要运用迭代的思想: 因为,所以, , 在此比较有技巧的方法就是: ,所以可以判断 当然,在这里可能不容易一下子发现这个结论,所以还可以列项的方法,把所有项数尽可能地列出来,然后就可以得到结论. 所以,综合有= (3)在解决的通项公式时也会遇到困难. ,所以数列的方程为,从而, 一方面,另一方面 所以,所以,综上有.例49. 已知函数f(x)的定义域为0,1,且满足下列条件: 对于任意0,1,总有,且; 若则有()求f(0)的值;()求证:f(x)4;()当时,试证明:.解析: ()解:令,由对于任意0,1,总有, 又由得即 ()解:任取且设 则 因为,所以,即

10、. 当0,1时,. ()证明:先用数学归纳法证明:(1) 当n=1时,不等式成立;(2) 假设当n=k时,由 得即当n=k+1时,不等式成立由(1)、(2)可知,不等式对一切正整数都成立.于是,当时,而0,1,单调递增 所以, 例50. 已知: 求证:解析:构造对偶式:令 则 又 ( 十一、积分放缩利用定积分的保号性比大小 保号性是指,定义在上的可积函数,则. 例51.求证:. 解析: , 时,. 利用定积分估计和式的上下界定积分产生和应用的一个主要背景是计算曲边梯形的面积,现在用它来估计小矩形的面积和.例52. 求证:,. 解析: 考虑函数在区间上的定积分.如图,显然-对求和,. 例53.

11、已知.求证:. 解析:考虑函数在区间上的定积分.-. 例54. (2003年全国高考江苏卷)设,如图,已知直线及曲线:,上的点的横坐标为().从上的点作直线平行于轴,交直线于点,再从点作直线平行于轴,交曲线于点.的横坐标构成数列.()试求与的关系,并求的通项公式; ()当时,证明; ()当时,证明.解析:(过程略).证明(ii):由知,.当时,.证明():由知.恰表示阴影部分面积,显然 .奇巧积累: 将定积分构建的不等式略加改造即得“初等”证明,如:;. 十二、部分放缩(尾式放缩) 例55.求证: 解析: 例56. 设求证: 解析: 又(只将其中一个变成,进行部分放缩),于是 例57.设数列满

12、足,当时证明对所有 有; 解析: 用数学归纳法:当时显然成立,假设当时成立即,则当时,成立。 利用上述部分放缩的结论来放缩通项,可得 注:上述证明用到部分放缩,当然根据不等式的性质也可以整体放缩:;证明就直接使用了部分放缩的结论 十三、三角不等式的放缩 例58.求证:. 解析:(i)当时, (ii)当时,构造单位圆,如图所示: 因为三角形aob的面积小于扇形oab的面积 所以可以得到 当时 所以当时有 (iii)当时, ,由(ii)可知: 所以综上有 十四、使用加强命题法证明不等式 (i)同侧加强 对所证不等式的同一方向(可以是左侧,也可以是右侧)进行加强.如要证明,只要证明,其中通过寻找分析

13、,归纳完成.例59.求证:对一切,都有.解析: 从而 当然本题还可以使用其他方法,如: 所以. (ii)异侧加强(数学归纳法) (iii)双向加强 有些不等式,往往是某个一般性命题的特殊情况,这时,不妨”返璞归真”,通过双向加强还原其本来面目,从而顺利解决原不等式.其基本原理为: 欲证明,只要证明:. 例60.已知数列满足:,求证: 解析: ,从而,所以有 ,所以 又,所以,所以有 所以 所以综上有引申:已知数列满足:,求证: .解析:由上可知,又,所以 从而 又当时,所以综上有. 同题引申: (2008年浙江高考试题)已知数列,.记,.求证:当时.(1); (2); (3). 解析:(1),

14、猜想,下面用数学归纳法证明: (i)当时,结论成立; (ii)假设当时,则时, 从而,所以 所以综上有,故 (2)因为则, ,相加后可以得到: ,所以,所以 (3)因为,从而,有,所以有 ,从而,所以,所以 所以综上有. 例61.(2008年陕西省高考试题)已知数列的首项, (1)证明:对任意的,; (2)证明:. 解析:(1)依题,容易得到,要证,即证即证,设所以即证明从而,即,这是显然成立的.所以综上有对任意的, (法二) ,原不等式成立 (2)由(1)知,对任意的,有取,则原不等式成立 十四、经典题目方法探究 探究1.(2008年福建省高考)已知函数.若在区间上的最小值为,令.求证:.

15、证明:首先:可以得到.先证明 (方法一) 所以 (方法二)因为,相乘得: ,从而. (方法三)设a=,b=,因为ab,所以a21, 求 a的取值范围. 解析:函数f (x)的定义域为(-, 1)(1, +), 导数为. () 当0 f (0) =1, 因而这时a满足要求. () 当a2时, f (x) 在区间 (-,)为减函数, 故在区间(0, ) 内任取一点, 比如取, 就有 x0(0, 1) 且 f (x0) n+.证明:由f(n)= =1-得f(1)+f(2)+f(n).此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子

16、, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。3、先放缩,后裂项(或先裂项再放缩)例3、已知an=n ,求证:3证明:=1 =1 () =1123本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;例4、已知数列满足求证:证明 本题通过对因式放大,而得到一个容易求和的式子,最终得出证明5、逐项放大或缩小例5、设求证: 证明: , 本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。6、固定一部分项,放缩

17、另外的项;例6、求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。7、利用基本不等式放缩例7、已知,证明:不等式对任何正整数都成立.证明:要证,只要证 .因为 ,故只要证 ,即只要证 .因为,所以命题得证.本题通过化简整理之后,再利用基本不等式由放大即可.8、先适当组合, 排序, 再逐项比较或放缩例8、.已知i,m、n是正整数,且1imn.(1)证明:niamia;(2)证明:(1+m)n(1+n)m证明:(1)对于1im,且a =m(mi+1),由于mn,对于整数k=1,2,i1,有,所

18、以(2)由二项式定理有:(1+m)n=1+cm+cm2+cmn,(1+n)m=1+cn+cn2+cnm,由(1)知miania (1imn ,而c=micinnicim(1mnm0c=n0c=1,mc=nc=mn,m2cn2c,mmcnmc,mm+1c0,mnc0,1+cm+cm2+cmn1+cn+c2mn2+cnm,即(1+m)n(1+n)m成立.构造函数法证明不等式的七种方法(其实高考中证明不等式时十有八九都需要构造函数,因此下面的前四种方法必须掌握)1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题技巧是构造

19、辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数,求证:当时,恒有分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数,从其导数入手即可证明。【解】 当时,即在上为增函数 当时,即在上为减函数故函数的单调递增区间为,单调递减区间于是函数在上的最大值为,因此,当时,即 (右面得证),现证左面,令, 当 ,即在上为减函数,在上为增函数,故函数在上的最小值为,当时,即,综上可知,当 【警示启迪】如果是函数在区间上的最

20、大(小)值,则有(或),那么要证不等式,只要求函数的最大值不超过就可得证2、作差法构造函数证明【例2】已知函数 求证:在区间上,函数的图象在函数的图象的下方;分析:函数的图象在函数的图象的下方问题,即,只需证明在区间上,恒有成立,设,考虑到要证不等式转化变为:当时,这只要证明: 在区间是增函数即可。【解】设,即,则=当时,=从而在上为增函数,当时 ,即,故在区间上,函数的图象在函数的图象的下方。【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。读者也可以设做一做,深刻体会其中的思

21、想方法。3、换元法构造函数证明【例3】(2007年,山东卷)证明:对任意的正整数n,不等式 都成立. 分析:本题是山东卷的第(ii)问,从所证结构出发,只需令,则问题转化为:当时,恒有成立,现构造函数,求导即可达到证明。【解】令,则在上恒正,所以函数在上单调递增,时,恒有 即,对任意正整数n,取【警示启迪】我们知道,当在上单调递增,则时,有如果,要证明当时,那么,只要令,就可以利用的单调增性来推导也就是说,在可导的前提下,只要证明即可4、从条件特征入手构造函数证明【例4】若函数y=在r上可导且满足不等式x恒成立,且常数a,b满足ab,求证:ab【解】由已知 x+0 构造函数 , 则 x+0,

22、从而在r上为增函数。 即 ab【警示启迪】由条件移项后,容易想到是一个积的导数,从而可以构造函数,求导即可完成证明。若题目中的条件改为,则移项后,要想到是一个商的导数的分子,平时解题多注意总结。5、主元法构造函数例(全国)已知函数(1) 求函数的最大值;(2) 设,证明 :.分析:对于(ii)绝大部分的学生都会望而生畏.学生的盲点也主要就在对所给函数用不上.如果能挖掘一下所给函数与所证不等式间的联系,想一想大小关系又与函数的单调性密切相关,由此就可过渡到根据所要证的不等式构造恰当的函数,利用导数研究函数的单调性,借助单调性比较函数值的大小,以期达到证明不等式的目的.证明如下:证明:对求导,则.

23、在中以b为主变元构造函数,设,则.当时,,因此在内为减函数.当时,因此在上为增函数.从而当时, 有极小值.因为所以,即又设.则.当时,.因此在上为减函数.因为所以,即.6、构造二阶导数函数证明导数的单调性例已知函数(1)若f(x)在r上为增函数,求a的取值范围;(2)若a=1,求证:x0时,f(x)1+x解:(1)f(x) aex,()在上为增函数,f(x)对恒成立,即-对恒成立记()-,则()-=(1-x)e-x,当时,(),当时,()知()在(-,1)上为增函数,在(1,+ )上为减函数, g(x)在x=1时,取得最大值,即g(x)max=g(1)=1/e, a1/e,即a的取值范围是1/

24、e, + ) (2)记f(x)=f(x) (1+x) =则f(x)=ex-1-x,令h(x)= f(x)=ex-1-x,则h(x)=ex-1当x0时, h(x)0, h(x)在(0,+ )上为增函数,又h(x)在x=0处连续, h(x)h(0)=0即f(x)0 ,f(x) 在(0,+ )上为增函数,又f(x)在x=0处连续, f(x)f(0)=0,即f(x)1+x小结:当函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把不等式的恒成立问题可转化为求函数最值问题不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为(或)恒成立,于是大于的最大值(或小于的最小值),从

25、而把不等式恒成立问题转化为求函数的最值问题因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法7.对数法构造函数(选用于幂指数函数不等式)例:证明当8.构造形似函数例:证明当例:已知m、n都是正整数,且证明:【思维挑战】 1、(2007年,安徽卷) 设求证:当时,恒有,2、(2007年,安徽卷)已知定义在正实数集上的函数其中a0,且, 求证:3、已知函数,求证:对任意的正数、, 恒有4、(2007年,陕西卷)是定义在(0,+)上的非负可导函数,且满足0,对任意正数a、b,若a 0、b0、c0 ,求证:,当且仅当时取等号。证明:从三个根式的结构特点容易联想到余弦定理,于是可构造如下图形,

26、使oaa,obb,occ,aob=boc=60 如图(1),则aoc120,ab=,bc=,ac= 由几何知识可知:abbcac,+当且仅当a、b、c三点共线时等号成立,此时有,即ab+bc=ac故当且仅当时取等号。图(1)四、构造椭圆证明不等式例5:求证:证明:的结构特点,使我们联想到椭圆方程及数形结合思想。于是令 ,则其图象是椭圆的上半部分,设y-2x=m,于是只需证, 因 m为直线y=2xm在y轴上的截距,由图(2)可知:当直线 y = 2 xm 过点(,0)时,图(2)m有最小值为m=;当直线y =2xm与椭圆上半部分相切时,m有最大值。由 得:13x2 + 4mx + m2 4 =

27、0令= 4(529m2)=0 得:或(舍去)即m的最大值为,故,即五、构造方程证明不等式例6:设 a1、a2、an 为任意正数,证明对任意正整数n不等式(a1 + a2 + + an)2 n ( a12 + a22 + + an2 )均成立证明:原不等式即为 4 (a1 + a2 + + an)24n ( a12 + a22 + + an2 ) 0由此联想到根的判别式而构造一元二次方程:( a12 + a22 + + an2 ) x 2 + 2 (a1 + a2 + + an ) x + n=0()因方程左边 (a1 x + 1)2 + (a2 x + 1)2 + (an x + 1)2 0当a1、a2、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论