连云港2015中考数学试题(解析版)_第1页
连云港2015中考数学试题(解析版)_第2页
连云港2015中考数学试题(解析版)_第3页
连云港2015中考数学试题(解析版)_第4页
连云港2015中考数学试题(解析版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2015年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题(每小题 3分,共24分)1. (3分)(2015?衢州)-3的相反数是()a . 3b. -3c. 1d,133考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:-3的相反数是3,故选:a .点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.d.(a+b) 2=a2+b22. (3分)(2015?连云港)下列运算正确的是()a . 2a+3b=5abb. 5a - 2a=3a c. a2?a3=a6考点:同底数哥的乘法;合并同

2、类项;完全平方公式.分析:根据同类项、同底数塞的乘法和完全平方公式计算即可.解答:解:a、2a与3b不能合并,错误;b . 5a- 2a=3a,正确;c. a2?a3=a5,错误;d. (a+b) 2=a2+2ab+b2,错误;故选b.点评:此题考查同类项、同底数哥的乘法和完全平方公式,关键是根据法则进行计算.3. (3分)(2015?连云港)2014年连云港高票当选全国十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约 18000元,其中18000”用科学记数法表示为()a . 0.18m05b. 1.8x103c. 1.8m04d. 18m03考点:科学记数法一表示较大的数

3、.分析:科学记数法的表示形式为 am0n的形式,其中10a|v 10, n为整数.确定n的值时, 要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值v1时,n是负数.解答:解:将18000用科学记数法表示为 1.8x104.故选c.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为am0n的形式,其中1ga|10, n为整数,表示时关键要正确确定a的值以及n的值.4. (3分)(2015?连云港)校要从四名学生中选拔一名参加市风华小主播”大赛,选拔赛中每名学生的平均成绩工及其方差s2如表所示,如果要选择一名成绩高且发挥稳

4、定的学生参赛,则应选择的学生是()甲乙丙丁工89982 s111.21.3a.甲b.乙c.丙d. 丁考点:方差;算术平均数.分析:从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合 两个方面可选出乙.解答:解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳 士因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙, 故选:b.点评:此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量, 方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差 越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据

5、越稳 士 7e.5. (3分)(2015?连云港)已知四边形 abcd,下列说法正确的是()a.当ad=bc , ab / dc时,四边形 abcd是平行四边形b.当ad=bc , ab=dc时,四边形 abcd是平行四边形c.当ac=bd , ac平分bd时,四边形 abcd是矩形d.当ac=bd , acxbd时,四边形 abcd是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出a不正确、b正确;由矩形和正方形的判定方法得出c、d不正确.解答:解:二一组对边平行且相等的四边形是平行四边形,a不正确; 两组对边分别相等的四边形是平行四边形,b正确; 对

6、角线互相平分且相等的四边形是矩形,c不正确; 对角线互相垂直平分且相等的四边形是正方形,d不正确;故选:b.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、 矩形、正方形的判定方法是解决问题的关键.6. (3分)(2015?连云港)已知关于x的方程x2-2x+3k=0有两个不相等的实数根,则 k的 取值范围是()a kc kv且 k0d k -2且 k 用3333考点:根的判别式.专题:计算题.分析:根据方程有两个不相等的实数根,得到根的判别式大于 0,即可求出k的范围.解答:解:.方程x2-2x+3k=0有两个不相等的实数根,a=4- 12k0,解得:k-l.

7、3故选a.点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.7. (3分)(2015?连云港)如图,o是坐标原点,菱形 oabc的顶点a的坐标为(-3, 4), 顶点c在x轴的负半轴上,函数 y=上 (x5=750(元),750月950,故c错误;d.第30天的日销售利润为;150x5=750 (元),故正确.点评:本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题(每小题 3分,共24分)9. (3分)(2015?连云港)在数轴上,表示- 2的点与原点的距离是2考点:数轴.分析:在数轴上,表示-2的点与原点的距离即是-2的绝对值,是2.解答:解

8、:-2与原点的距离为:| - 2|=2.点评:注意:距离是一个非负数,求一个数对应的点到原点的距离就是求这个数的绝对值.10. (3分)(2015?连云港)代数式一在实数范围内有意义,则 x的取值范围是 x君x - 3考点:分式有意义的条件.分析:根据分母不等于0进行解答即可.解答:解:要使代数式 一l在实数范围内有意义,k - 3可得:x - 3解得:x与,故答案为:x书点评:此题考查分式有意义,关键是分母不等于0.11. (3 分)(2015?连云港)已知 m+n=mn ,贝u ( m1) (n1) = 1.考点:整式的混合运算一化简求值.分析:先根据多项式乘以多项式的运算法则去掉括号,然

9、后整体代值计算.解答:解:(m1) (n1) =mn ( m+n) +1,m+n=mn ,(mt) (nt) =mn (m+n) +1=1 ,故答案为1.点评:本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.12. (3分)(2015?连云港)如图,一个零件的横截面是六边形,这个六边形的内角和为考点:多边形内角与外角.分析:根据多边形内角和公式进行计算即可.解答:解:由内角和公式可得:(6-2) m80=720.故答案为:720.点评:此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n-2). 180。(nm)且n为整数).13. (

10、3分)(2015?连云港)已知一个函数,当 x0时,函数值y随着x的增大而减小,请 写出这个函数关系式 y= - x+2 (写出一个即可).考点:一次函数的性质;反比例函数的性质;二次函数的性质.专题:开放型.分析:写出符合条件的函数关系式即可.斛答,解:函数关系式为:y= - x+2, y=, y=-x2+i等;故答案为:y= - x+2点评:本题考查的是函数的性质,此题属开放性题目,答案不唯一.14. (3分)(2015?连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为8兀.主视图 左视图便视图考点:由三视图判断几何体;几何体的

11、展开图.分析:根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为 4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积上4兀4=8 71.故答案为:8兀.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面 的周长,扇形的半径等于圆锥的母线长.也考查了三视图.15. (3 分)(2015?连云港)在 4abc 中,ab=4 , ac=3 , ad 是 4abc 的角平分线,贝uabd 与4

12、acd的面积之比是 4: 3 .考点:角平分线的性质.分析:估计角平分线的性质,可得出 abd的边ab上的高与aacd的ac上的高相等, 估计三角形的面积公式,即可得出4abd与4acd的面积之比等于对应边之比.解答:解:“是4abc的角平分线,设4abd的边ab上的高与 4acd的ac上的高分别为 hl, h2,hi=h2,aabd 与 aacd 的面积之比=ab : ac=4 : 3,故答案为4: 3.点评:本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性 质是解题的关键.16. (3 分)(2015?连云港)如图,在 4abc 中,/ bac=60 , /abc

13、=90 ,直线 11/12/13, 11与12之间距离是1, 12与13之间距离是2,且11, 12, 13分别经过点a, b, c,则边ac 的长为 为五-3考点:相似三角形的判定与性质;平行线之间的距离;勾股定理.析.过点b作efx12,交11于e,交13于f,在rtaabc中运用三角函数可得 理=yi,a3易证aebsbfc,运用相似三角形的性质可求出fc,然后在rtbfc中运用勾股定理可求出 bc,再在rtaabc中运用三角函数就可求出 ac的值.解答:解:如图,过点 b作efx12,交11于e,交13于f,如图. / bac=60 , / abc=90 .tan/ bac=直线 11

14、 / 12 / 13,efx11, efx13, / aeb= / bfc=90 . / abc=90 ,/ eab=90 - / abe= / fbc,abfcaaeb , eb=1 ,fc=疡在 rtabfc 中,bc=vbf2+fc2=j22+ (近)”帅.在 rtaabc 中,sin / bac=-: _ :ac= _v31 v3 3故答案为生匣.3点评:本题主要考查了相似三角形的判定与性质、三角函数、特殊角的三角函数值、勾股定理、平行线的判定与性质、同角的余角相等等知识, 构造k型相似是解决本题的关键.三、解答题17. (6 分)(2015?连云港)计算:j3)?+(j) 1 -20

15、150-考点:实数的运算;零指数哥;负整数指数哥.专题:计算题.分析:原式第一项利用二次根式的性质计算,第二项利用负整数指数哥法则计算,最后一项 利用零指数哥法则计算即可得到结果.解答:解:原式=3+2 -1=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. (6分)(2015?连云港)化简:(10 nrhl考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约 分即可得到结果.解答:解:原式m (ra+1)点评:19. (6分)(2015?连云港)解不等式组:七915x+l4 (r- 2)id - 2此题考查

16、了分式的混合运算,熟练掌握运算法则是解本题的关键.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答: 传工+15解:.|_xh4 (m-2)解不等式得:x2,解不等式得:xv 3,所以不等式组的解集是 2vxv 3.点评:本题考查的是解一元一次不等式组,熟知同大取较大,同小取较小,小大大小中间找,大大小小解不了 ”的原则是解答此题的关键.20. (8分)(2015?连云港)随着我市社会经济的发展和交通状况的改善,我市的旅游业得 到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部 分员工,记录每个人消费金额,并将调查数据适当调整,绘制成

17、如图两幅尚不完整的表 和图.组别个人年消费金额x(元)频数(人数)频率ax8000120.10合计c1.00根据以上信息回答下列问题:(1) a= 36 , b= 0.30 , c= 120 .并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在c 组;(3)若这个企业有 3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.考点:频数(率)分布表;用样本估计总体;条形统计图;中位数.分析:(1)首先根据a组的人数和所占白百分比确定c的值,然后确定 a和b的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.解答:

18、解:(1)观察频数分布表知:a组有18人,频率为0.15,. c=18 田.15=120,a=36,b=36t20=0.30;c 组的频数为 120 - 18- 36- 24- 12=30,补全统计图为:61人的平均数,(2) .共 120 人,中位数为第60和第中位数应该落在 c小组内;(3)个人旅游年消费金额在6000元以上的人数 3000x (0.10+0.20) =900人.点评:本题考查了统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问 题的关键.条形统计图能清楚地表示出每个项目的数据.理解平均数、中位数和众数 的概念,并能根据它们的意义解决问题.2”,3“,3“,5

19、“,6”的五张21. (10分)(2015?连云港)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为牌背面朝上洗匀,先从中抽出 1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为奖项|x|一等奖|x|=4(1)用列表或画树状图的方法求出甲同学获得(2)是否每次抽奖都会获奖,为什么?二等奖|x|二3等奖的概率;x,按表格要求确定奖项.三等奖1 耳x|v 3考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求

20、得答案;(2)由树状图可得:当两张牌都是2时,|x|=0,不会有奖.解答:解:(1)画树状图得:第一次开始3|x| 113 42 3m 63 2 2 1共有20种等可能的结果,甲同学获得一等奖的有2种情况,甲同学获得一等奖的概率为:20 10(2)不一定,当两张牌都是2时,|x|=0,不会有奖.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22. (10分)(2015施云港)如图,将平行四边形 abcd沿对角线bd进行折叠,折叠后点 c落在点f处,df交ab于点e.(1)求证;/edb=/ebd;(2)判断af与db是否平行,并说明理由.考点:翻折变换

21、(折叠问题);平行四边形的性质.分析:(1)由折叠和平行线的性质易证 / edb= / ebd ;(2) af / db ;首先证明ae=ef ,得出/ afe= / eaf ,然后根据三角形内角和与等式 性质可证明/ bde= / afe ,所以af / bd .解答:解:(1)由折叠可知:/cdb=/edb,四边形abcd是平行四边形,dc / ab ,z cdb= / ebd,/ edb= / ebd;(2) af / db ;1. / edb= / ebd,de=be ,由折叠可知:dc=df ,2. 四边形abcd是平行四边形,dc=ab ,df=ab ,ae=ef ,/ eaf=

22、/ efa,在 bed 中,/ edb+ / ebd+ / deb=180 ,2/ edb+ / deb=180 ,同理,在 4aef 中,2/efa+/aef=180 ,3. / deb= / aef,/ edb= / efa,af / db .f (q点评:本题主要考查了折叠变换、平行四边形的性质、等腰三角形的性质的综合应用,运用 三角形内角和定理和等式性质得出内错角相等是解决问题的关键.23. (10分)(2015?连云港)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价 80元,这样按原定票价需花费 6000元购买的门票张数, 现在只花费了 4800

23、元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.考点:一元二次方程的应用;分式方程的应用.分析:(1)设每张门票的原定票价为 x元,则现在每张门票的票价为(x-80)元,根据 按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据原定票价经过连续二次降价后降为324元”建立方程,解方程即可.解答:解:(1)设每张门票的原定票价为 x元,则现在每张门票的票价为(x-80)元,根 据题意得6口。0= 420。宴 k

24、-解得x=400 .经检验,x=400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400 (1 -y) 2=324,解得:y1=0.1, y2=1.9 (不合题意,舍去).答:平均每次降价 10%.点评:本题考查了一元二次方程与分式方程的应用,解题关键是要读懂题目的意思,根据题 目给出的条件,找出合适的等量关系,列出方程,再求解.24. (10分)(2015施云港)已知如图,在平面直角坐标系xoy中,直线y=/3x - 2/5与x轴、y轴分别交于a, b两点,p是直线ab上一动点,op的半径为1.(1)判断原点。与。p的位置关系,并说明理由;(2

25、)当。p过点b时,求。p被y轴所截得的劣弧的长;(3)当。p与x轴相切时,求出切点的坐标.考点:圆的综合题.分析:(1)由直线y=jlx-2尼与x轴、y轴分别交于a, b两点,可求得点 a与点b的坐标,继而求得 / oba=30 ,然后过点 o作oh, ab于点h,利用三角函数可求得oh的长,继而求得答案;(2)当op过点b时,点p在y轴右侧时,易得 op被y轴所截的劣弧所对的圆心角为:180-30-30=120,则可求得弧长;同理可求得当 op过点b时,点p在y轴左侧时,。p被y轴所截得的劣弧的长;(3)首先求得当op与x轴相切时,且位于x轴下方时,点d的坐标,然后利用对称 性可以求得当op

26、与x轴相切时,且位于 x轴上方时,点d的坐标.解答:解:(1)原点o在。p外.理由:直线y=jx - 275与x轴、y轴分别交于a, b两点, 点 a (2, 0),点 b (0, 一 2内),在 rtaoab 中,tan/oba=j2=jl=2/0 27s 3/ oba=30 ,如图1,过点。作ohlab于点h,在 rtaobh 中,oh=ob ?sin/oba=j1,. 一 ; 1 原点o在。p外;(2)如图2,当。p过点b时,点p在y轴右侧时, pb=pc,/ pcb=/ oba=30 , op被y轴所截的劣弧所对的圆心角为:180- 30 - 30 =120,弧长为:120义兀xi 2

27、兀1802n同理:当op过点b时,点p在y轴左侧时,弧长同样为:当。p过点b时,op被y轴所截得的劣弧的长为:(3)如图3,当。p与x轴相切时,且位于 x轴下方时,设切点为 d, 在pdx轴,pd/ y 轴,/ apd= / abo=30 ,在 rta dap 中,ad=dp ?tanz dpa=1 man30=退3od=oa ad=2 ,此时点d的坐标为:(2-,0);当。p与x轴相切时,且位于 x轴上方时,根据对称性可以求得此时切点的坐标为:(0);oosb图1e2综上可得:当op与x轴相切时,切点的坐标为:(2-迤,0)或(,0).点评:此题属于一次函数的综合题,考查了直线上点的坐标的性

28、质、切线的性质、弧长公式 以及三角函数等知识.注意准确作出辅助线,注意分类讨论思想的应用.25. (10分)(2015?连云港)如图,在 4abc中,/ abc=90 , bc=3 , d为ac延长线上 一点,ac=3cd ,过点d作dh /ab ,交bc的延长线于点 h.(1)求 bd?cosz hbd 的值;(2)若 / cbd= z a,求 ab 的长.考点:相似三角形的判定与性质;解直角三角形.黑,求出bd?cos/hbd的值d1j(1)首先根据dh/ab,判断出aabc sdhc,即可判断出bh的值是多少,再根据在 rta bhd中,cos/hbd=是多少即可.(2)首先判断出 ab

29、csbhd,推得mw;然后根据abcsdhc,推得 hli dji度”二%所以ab=3dh ;最后根据卫国史,求出dh的值是多少,进而求出 abdh_cd-dh- 4的值是多少即可.解答:解:(1) dh /ab ,/ bhd= / abc=90 ,abcsdhc ,ac bc=q =3cd cbch=1 , bh=bc+ch ,在 rtabhd 中,/uon bh cos/ hbd=, bd,bd?cos/ hbd=bh=4 .(2) z cbd= za , /abc=/bhd, aabcabhd , bc- 一 , hd bh abcsdhc ,dh cdab=3dh ,3 3dh .dh

30、- 4 解得dh=2 ,ab=3dh=3 2=6, 即ab的长是6.点评:(1)此题主要考查了相似三角形的性质和应用,要熟练掌握,解答此题的关键是要 明确:寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形 对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可 单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件 方可.(2)此题还考查了直角三角形的性质和应用,要熟练掌握.26. (12分)(2015?连云港)在数三兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形abcd与边长为26的正方形aefg按图1位置放置,ad与ae

31、在同一直线上,ab与ag在同一直线上.(1)小明发现dglbe,请你帮他说明理由.(2)如图2,小明将正方形 abcd绕点a逆时针旋转,当点 b恰好落在线段dg上时,请你帮他求出此时 be的长.(3)如图3,小明将正方形 abcd绕点a继续逆时针旋转,线段 dg与线段be将相交,交 点为h,写出4ghe与4bhd面积之和的最大值,并简要说明理由.考点:几何变换综合题.专题:综合题.分析:(1)由四边形abcd与四边形aefg为正方形,利用正方形的性质得到两对边相等, 且夹角相等,利用 sas得到三角形adg与三角形abe全等,利用全等三角形对应 角相等得z agd= / aeb,如图1所示,延

32、长eb交dg于点h,利用等角的余角相 等得到/ dhe=90 ,利用垂直的定义即可得 dg,be ;(2)由四边形abcd与四边形aefg为正方形,利用正方形的性质得到两对边相等, 且夹角相等,利用 sas得到三角形adg与三角形abe全等,利用全等三角形对应 边相等得到 dg=be,如图2,过点a作am,dg交dg于点m , / amd= / amg=90 , 在直角三角形 amd中,求出am的长,即为dm的长,根据勾股定理求出 gm的长, 进而确定出 dg的长,即为be的长;(3) aghe abhd面积之和的最大值为 6,理由为:对于 aegh,点h在以eg 为直径的圆上,即当点 h与点

33、a重合时,4egh的高最大;对于 4bdh,点h在以 bd为直径的圆上,即当点 h与点a重合时,4bdh的高最大,即可确定出面积的 最大值.解答:解:(1)二.四边形abcd和四边形aefg都为正方形,ad=ab , / dag= / bae=90 , ag=ae ,在4adg和4abe中,ad=ab/d柚二/bae ,ag=ae adg abe (sas),/ agd= zaeb ,如图1所示,延长eb交dg于点h,在 adg 中,/ agd+ / adg=90 , / aeb+ / adg=90 , edh 中,/ aeb+ / adg+ / dhe=180 ,/ dhe=90 , dgx

34、be; 2)二四边形abcd和四边形aefg都为正方形,ad=ab , / dab= / gae=90 , ag=ae , / dab+ / bag= / gae+ / bag ,即 / dag= / bae , 在4adg和4abe中, ad=abag=aeaadgaabe (sas),dg=be ,如图 2,过点 a 作 am,dg 交 dg 于点 m , / amd= / amg=90 , bd为正方形abcd的对角线,/ mda=45 ,在 rtaamd 中,/ mda=45 ,cos45 =, ad ad=2 ,dm=am= v2,在rtaamg中,根据勾股定理得:gm=g2 - &

35、武=dg=dm+gm=近+/,be=dg=|v+用;(3) aghe abhd面积之和的最大值为 6,理由为:对于4egh,点h在以eg为直径的圆上,当点h与点a重合时,4egh的高最大;对于4bdh,点h在以bd为直径的圆上,当点h与点a重合时,4bdh的高最大,则4ghe和4bhd面积之和的最大值为 2+4=6 .点评:此题属于几何变换综合题, 涉及的知识有:正方形的性质,全等三角形的判定与性质, 勾股定理,圆周角定理,以及锐角三角函数定义,熟练掌握全等三角形的判定与性质 是解本题的关键.27. (14分)(2015?连云港)如图,已知一条直线过点(0, 4),且与抛物线y=fx2交于a,b两点,其中点a的横坐标是-2.(1)求这条直线的函数关系式及点b的坐标.(2)在x轴上是否存在点 c,使得4abc是直角三角形?若存在,求出点 c的坐标,若不 存在,请说明理由.(3)过线段ab上一点p,作pm /x轴,交抛物线于点 m,点m在第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论