圣维南方程组_第1页
圣维南方程组_第2页
圣维南方程组_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、简介一百多年来,虽然为了考虑更多的因素和实际应用方便对它的基本假定作了某些简化或 改进,产生出多种不同的表达形式,但其实质没有变化。主要进展表现在求解方法的改进和 创新。1877年法国工程师克莱茨提出了瞬态法。1938年苏联C . A .赫里斯季安诺维奇提出另一类解法特征线法。 但均因计算量较大,不得不进行各种简化处理,使实际应用受到限制 自50年代以来,随着电子计算机的普及,研究和提出了一整套解法,并研究出若干个通用性 较强的应用软件(即程序系统),促进了圣维南方程组在水文和其他工程领域中的应用。方程组的形式一维单宽水流情况下,圣维南方程组的典型形式为:式中t为时间;s为距水道某固定断面沿流

2、程的距离;h、v、Z0分别为相应于s处过水断面的水深、断面平均流速和水底高程;Hf为由于摩阻损失而引起的能量比降;g为重力加速度;t和s为自变量;h和v为因变量;ZO、Hf可由s、h和v确定。(1)式为连续方程,反映 了水道中的水量平衡,即蓄量的变化率(第一项)应等于沿程流量的变化率 (第二项)。(2)式为运动方程。其中第一项反映某固定点的局地加速度,第二项反映由于流速的空间分布不均 匀所引起的对流加速度。以上两项称为惯性项。第三项反映由于底坡引起的重力作用,称为 重力项。第四项反映了水深的影响,称为压力项。第三、四项可合并为一项,即水面比降。 第五项为水流内部及边界的摩阻损失。该式表达了重力

3、与压力的联合作用使水流克服惯性力 和摩阻引起的能量损失而获得加速度。圣维南方程组还有许多其他形式。例如:以断面流量代替流速,以面积代替水深作为因 变量;也可考虑河道两侧的沿程入流、地转力和水面风力的影响;还可把垂线平均流速作为 因变量,写出二维水体渐变不恒定明流的运动方程。基本假定建立圣维南方程组的基本假定是: 流速沿整个过水断面(一维情形)或垂线(二维情形)均匀分布,可用其平均值代替。不考虑水流垂直方向的交换和垂直加速度,从而可假设水压力呈静水压力分布,即与水深成正比; 河床比降小,其倾角的正切与正弦值近似相等; 水流为渐变流动,水面曲线近似水平。此外,在计算不恒定的摩阻损失Hf时,常假设可

4、近似采用恒定流的有关公式,如曼宁公式(见河水运动)。圣维南方程组描述的不恒定水流运动是一种浅水中的长波传播现象,通常称为动力波。 因为水流运动的主要作用力是重力,属于重力波的范畴。如忽略运动方程中的惯性项和压力 项,只考虑摩阻和底坡的影响,简化后方程组所描述的运动称为运动波。如只忽略惯性项的 影响,所得到的波称为扩散波。运动波、扩散波及其他简化形式可以较好地近似某些情况的 流动,同时简化计算便于实际应用。求解方法圣维南方程组在数学上属于一阶拟线性双曲型偏微分方程组。联解方程组并使其符合给 定的初始条件和边界条件,就可得出不恒定水流的流速和水深(或其他因变量)随流程和时间的变化,即v = v(s

5、,t)和h= h(s,t) o初始条件为某一起始时刻的水流状态,如水道沿程各 断面的水深和流速。边界条件为所计算的水体的边界水流状态,如某一河段上、下游边界断 面处的水位过程、流量过程或水位流量关系等。给定的初始条件和边界条件的数目和形式必 须恰当,符合水流的性质,才能保证方程组的解存在和唯一,保证不致因数据的微小变化而 使方程的解发生很大的变化。此时,问题称为是适定的,求解才有意义。除特殊情况外,很难用解析方法求得圣维南方程组的解析解。一般只能通过数值计算获 得个别情况的近似解。常用的数值计算方法主要有以下三类:有限差分法。将所计算的水 体按照一定的网格划分,每个网格点处的微分形式的圣维南方

6、程组,用某种形式的差分方程 组来逼近。边界条件也写成差分形成。然后逐时段地求解差分方程组,得出各网格点(如断 面)处的水深及流速。根据所采用的差分计算方法的不同,对每一计算时段来说,或可逐个 算出各网格点处的水力要素,或是必须联立求解各网点处的水力要素。前者称为显式差分法, 后者称为隐式差分法。克莱茨提出的瞬态法就属于一种简化的显式差分法。特征法。把圣 维南方程组由偏微分方程组变换为在所谓“特征”上成立的常微分方程组,通常称为特征方 程组。在空间为一维的情况下,“特征”的几何表示称为特征线,而在二维则为特征面。不 恒定水流中的波动和干扰是沿“特征”传播的。用有限差分法联立求解表达“特征”几何位

7、 置的方程和特征方程组,即可求得所需的数值解。有限单元法。把水体划分成几何形状简 单的单元(如一维的直线段,二维的矩形、直边或曲边三角形等 ),在每一单元内,解用数学处 理比较简单的内插函数来逼近。把圣维南方程组应用于每个单元,变换为积分形式,并根据 某种准则(如逼近的残差最小)来确定内插函数中的待定系数便可定解。常用的是伽辽金半 离散有限单元法。除了求解完全或简化形式的圣维南方程组的上述解法,在水文学中多年来还对一维流动 发展出许多简化计算方法。例如,把运动方程简化为计算时段内计算河段的蓄水量与出流量 之间关系的方程,然后联立求解。同时,已对水文学中常用的方法与求解圣维南方程组的关 系进行了研究。如应用广泛的马斯金格姆(曾译“马斯京根”)流量演算法,可列为扩散波中的特殊情形。水文学方法简单,而且能较好地适用于某些情况,今后仍将长期广泛地被应 用。对于非渐变的流动, 水流通过激波把两部分渐变流连接起来。如通过水跃实现由急流(超临界流)至煖流(次临界流)的过渡。在涨潮和溃坝波中也常出现近乎垂直的波前。此时, 两边的渐变流仍可用圣维南方程组来描述。只要补充激波处的跳跃条件和用以判别物理上是 否许可的某种准则(如熵条件等)即可求解。圣维南方程组所描述的具有自由表面的水体的渐变不恒定流动的计算具有重要的实际意 义。洪流演进计算是洪水预报、堤防设计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论