高中数学教学论文:初高中数学街接教学的现状分析与对策_第1页
高中数学教学论文:初高中数学街接教学的现状分析与对策_第2页
高中数学教学论文:初高中数学街接教学的现状分析与对策_第3页
高中数学教学论文:初高中数学街接教学的现状分析与对策_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初高中数学衔接教学的现状分析与对策 内容摘要: 提高中学数学教学质量,不仅仅是为了提高学生的数学成绩,更重要的是能使学生学到有用的数学。而初中生进入高中后,相当一部分学生进入数学学习的困难期,数学成绩出现严重的滑坡现象,甚至过去的尖子生可能变为学习后进生.渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣.造成这种现象的原因是多方面的,本文就这个问题进行分析,探讨其原因,寻找解决对策. 关键词:高中学生学习困难原因对策 2006年9月,浙江省高中数学统一实施新课程,新教材将融进近代、现代数学内容,精简整合传统高中数学内容,与现行教材相比,教学内容将增多,

2、教材明显变厚,与义务教育初中阶段的课程相比,其教学容量和教学难度大为提高,而高中新课程的课时数还将比现在减少。对此相当一部分学生进入数学学习的困难期,数学成绩出现严重的滑坡现象,甚至过去的尖子生可能变为学习后进生.渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣.因此,对任何一个高中的数学教师而言研究新教材,按照高中学生的个性特点和认知结构,设计出指导学生高效率学习的有效方法,以使学生适应新教材,顺利完成初高中数学衔接学习,培养学生自学、探索和创新能力,体现新课程标准的原则和精神,将十分紧迫地摆在我们面前。下面就对初高中数学教学上的衔接这个问题进行分析

3、,探讨其原因,寻找解决对策. 一、影响高中数学成绩下降的主要原因教材的原因 现行初中数学教材在内容上进行了较大幅度的调整,难度,深度和广度大大降低了,那些在高中学习中经常应用到的知识,如:对数,二次不等式,解斜三角形,分数指数幂等内容,都转移到高一阶段补充学习,加重了高一数学的份量. 初中教材叙述方法比较简单,语言通俗易懂,直观性,趣味性强,结论容易记忆,应试效果也比较理想. 而高中数学一开始,概念抽象,定理严谨,逻辑性强,教材叙述比较严谨,规范,抽象思维和空间想象明显提高,知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了起点高,难度大,容量多的特点.例如:高一数学第一章就有

4、基本概念39个,数学符号28个;一开学就形成了概念密集的学习阶段.与义务教育初中阶段的课程相比,其教学容量和教学难度大为提高.而且高中新课程的课时数还将减少,因而教学进度一般较快,从而增加了教与学的难度.这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高. 2.被动学习 在初中,教师讲得细,类型归纳得全,反复练习.考试时,学生只要记忆概念,公式,及例题类型,一般都可以对号入座取得好成绩.因此,学生习惯于围着教师转,不需要独立思考和对规律进行归纳总结.学生满足于你讲我听,你放我录,缺乏学习主动性.表现在不定计划,坐等上课,课前没有预习,对老师上课的内容不了解,上课忙于记笔记,没听到门道

5、,没有真正理解所学内容.而到了高中,数学学习要求学生勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通.所以,刚入学的高一新生,往往沿用初中学法,致使学习出现困难,完成当天作业都很困难,更没有预习,复习,总结等自我消化,自我调整的时间.这显然不利于良好学法的形成和学习质量的提高.造成高一学生数学学习的困难. 不重视基础一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海到正规作业或考试中不是演算出错就是中途“卡壳”进一步学习条件不具备

6、高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃这就要求必须掌握基础知识与技能为进一步学习作好准备高中数学很多地方难度大、方法新、分析能力要求高如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的另外,学生学习数学的情感,兴趣,性格,意志品质的优劣,学习目的和学习态度如何,都会影响高中学生的数学学习. 二、做好初高中数学教学衔接,帮助学生解决数学困难的对策 (一)做好准备工作,为做好

7、衔接打好基础. 1.做好入学教育.这是做好衔接的基础工作,也是首要工作。通过入学教育提高学生对初高中衔接重要性的认识,增强紧迫感,消除松懈情绪,初步了解高中数学学习的特点,为其它措施的落实奠定基础.这里主要做好四项工作:一是给学生讲清高一数学在整个中学数学中所占的位置和作用;二是结合实例,采取与初中对比的方法,给学生讲清高中数学内容体系特点和课堂教学特点;三是结合实例给学生讲明初高中数学在学法上存在的本质区别,并向学生介绍一些优秀学法,指出注意事项;四是请高年级学生谈体会讲感受,引导学生少走弯路,尽快适应高中学习。2.了解学生的学习基础,计划教学工作。在高中数学起始教学中,教师必须着重了解和掌

8、握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能产生数学思维的兴奋灶,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,使学生有一种“跳一跳,就能摸到桃”的感觉,提高学生学好高中数学的信心。(二)优化课堂教学环节,做好初高中数学知识衔接教学 1.立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中

9、有许多难理解和掌握的知识点,如集合,映射等,对高一新生来讲确实困难较大.因此,在教学中,应从高一学生实际出发,采用低起点,小梯度,多训练,分层次的方法,将教学目标分解成若干递进层次逐层落实.在速度上,放慢起始进度,逐步加快教学节奏.在知识导入上,多由实例和已知引入.在知识落实上,先落实死课本,后变通延伸用活课本.在难点知识讲解上,从学生理解和掌握的实际出发,对教材作必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。例如:高一年级学生刚进校时,一般我们都要复习一下二次函数的内容,而二次函数中最大、最小值尤其是含参数的二次函数的最大、小值的求法学生普遍感到比较困难,为此我

10、作了如下题型设计,对突破学生的这个难点问题有很大的帮助,而且在整个操作过程中,学生普遍(包括基础差的学生)情绪亢奋,思维始终保持活跃。设计如下: 1求出下列函数在x0,3时的最大、最小值:(1)y=(x1)21,(2)y=(x1)21,(3)y=(x4)21 2求函数y=x22axa22,x0,3时的最小值。 3求函数y=x22x2,xt,t1的最小值。 上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。2.重视知识的形成过程和方法探索过程,培养学生创造能力。 高中数学比初中数学抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能

11、只停留在对知识结论的死记硬套上,这就要求教师应向学生展示新知识和新解法的产生背景,形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且还使学生学会如何质疑和释疑的思想方法,促进创造性思维能力的提高。例如:在学习了“函数的奇偶性”后,学生在判断函数的奇偶性时常忽视定义域问题,为此我们可设计如下问题:判断函数在区间26,2a上的奇偶性。不少学生由f(x)=f(x)立即得到f(x)为奇函数。教师设问:区间26,2a有什么意义?y=x2一定是偶函数吗?通过对这两个问题的思考学生意识到函数只有在a=2或a=1即定义域关于原点对称时才是奇函数。3.重视培养学生自我反思自我总结的良好习惯,

12、提高学习的自觉性. 高中数学概括性强,题目灵活多变,只课上听懂是不够的,需要课后进行认真消化,认真总结归纳.这就要求学生应具备善于自我反思和自我总结的能力.因此,在教学中,应当抓住时机积极培养.在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:思解题思路和步骤,思一题多解和一题多变,思解题方法和解题规律的总结.由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。例如:某单位计划建筑一矩形围墙,现有材料可筑墙的总长度为100m,求矩形的面积s与矩形长x的函数关系式? 解:设矩形的长为x米,则宽为(50x)米,由题意得: 故函数关系式为:。如果解题到此为止

13、,则本题的函数关系式还欠完整,缺少自变量的范围。也就说学生的解题思路不够严密。因为当自变量取负数或不小于50的数时,s的值是负数,即矩形的面积为负数,这与实际问题相矛盾,所以还应补上自变量的范围:即:函数关系式为: ()这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。 4.重视专题教学。 利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识,应用形式,解决方法和解题规律.并借此机会对学生进行学法的指点,有

14、意渗透数学思想方法。例如:绝对值的定义是: 所以在解含有绝对值的不等式|logx|+|log (3x)|1时,就必须根据确定logx ,log(3x)正负的x值1和2将定义域(0,3)分成三个区间进行讨论,即0x1,1x2,2x3三种情形分类讨论。(三)加强学法指导,培养良好学习习惯 良好学习习惯是学好高中数学的重要因素.它包括:制定计划,课前自学,专心上课,及时复习,独立作业,解决疑难,系统小结和课外学习几个方面.改进学生的学习方法,可以这样进行:引导学生养成认真制定计划的习惯,合理安排时间,从盲目的学习中解放出来;引导学生养成课前预习的习惯.可布置一些思考题和预习作业,保证听课时有针对性.还要引导学生学会听课,要求做到心到,即注意力高度集中;眼到,即仔细看清楚老师每一步板演;手到,即适当做好笔记;口到,即随时回答老师的提问,以提高听课效率.引导学生养成及时复习的习惯,下课后要反复阅读课本,回顾课堂上老师所讲的内容,查阅有关资料,或向老师向同学请教,以强化对基本概念,知识体系的理解和记忆.引导学生养成独立作业的习惯,要独立地分析问题,解决问题.切忌有点小问题,或习题不会做,就不加思索地请教老师或同学.引导学生养成系统复习小结的习惯,将所学新知识融入有关的体系和网络中,以保持知识的完整性.引导学生养成阅读有关报刊和资料的习惯,以进一步

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论