


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学专项训练:实际问题与二次函数(人教版) 一、利用函数求图形面积的最值问题一、围成图形面积的最值1、 只围二边的矩形的面积最值问题例 1、 如图 1,用长为 18 米的篱笆(虚线部分)和两面墙围成矩形苗圃。(1) 设矩形的一边长为 x(米),面积为 y(平方米),求 y 关于 x的函数关系式;(2) 当 x 为何值时,所围成的苗圃面积最大?最大面积是多少?分析:关键是用含 x 的代数式表示出矩形的长与宽。解:(1)设矩形的长为 x(米),则宽为(18- x)(米),根据题意,得: y = x(18 - x) = -x 2 + 18x ;试卷第 13 页,总 13 页x 0又 , 0x 1
2、818 - x 0(2) y = x(18 - x) = -x 2 + 18x 中,a= -10,y 有最大值,b184ac - b 20 -182即当 x = -2a= - 2 (-1)= 9 时, ymax =4a= 81 4 (-1)故当 x=9 米时,苗圃的面积最大,最大面积为 81 平方米。点评:在回扣问题实际时,一定注意不要遗漏了单位。2、 只围三边的矩形的面积最值例 2、 如图 2,用长为 50 米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大?分析:关键是明确问题中的变量是哪两个,并能准确布列出函数关系式50 - x解:设养鸡场的长为 x(米),面积为
3、 y(平方米),则宽为()2(米),根据题意,得: y = x( 50 - x) = - 1 x2 + 25x ;22x 0又 50 - x, 0x 502 0 y = x( 50 - x) = - 1 x2 + 25x 中,a= - 1 0,y 有最大值,2即当 x = - b2a2= -252 (- 1 )2= 25 时,2ymax= 4ac - b 24a= 0 - 252 4 (- 1 )2= 6252625故当 x=25 米时,养鸡场的面积最大,养鸡场最大面积为平方米。2点评:如果设养鸡场的宽为 x,上述函数关系式如何变化?请读者自己完成。3、 围成正方形的面积最值例 3、将一条长为
4、 20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形 (1)要使这两个正方形的面积之和等于 17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm2 吗? 若能,求出两段铁丝的长度;若不能,请说明理由(1) 解:设剪成两段后其中一段为 xcm,则另一段为(20-x)cm由题意得: (x )24+ ( 20 - x )2 4= 17解得: x1 = 16, x2 = 4当 x1 = 16 时,20-x=4;当 x2 = 4 时,20-x=16答:这段铁丝剪成两段后的长度分别是 16 厘米、4 厘米。(2) 不能理由是:设第一个正方形的边长
5、为 xcm,则第二个正方形的边长为 20 - 4x = (5 - x) cm,围成两个正方形4的面积为 ycm2,根据题意,得: y = x 2 + (5 - x)2 = 2x 2 - 10x + 25 , y = x 2 + (5 - x)2 = 2x 2 - 10x + 25 中,a= 20,y 有最小值,b- 1054ac - b 24 2 25 - 10225即当 x = -2a= - 2 2 =2 时, ymin =4a=4 2=12.512,故两个正2方形面积的和不可能是 12cm2.练习 1、如图,正方形 efgh 的顶点在边长为 a 的正方形 abcd 的边上,若 ae=x,正
6、方形 efgh 的面积为 y.(1) 求出 y 与x 之间的函数关系式;(2) 正方形 efgh 有没有最大面积?若有,试确定 e 点位置;若没有,说明理由.二、利用二次函数解决抛物线形建筑物问题例题 1如图(1)是一个横断面为抛物线形状的拱桥,当水面在 l 时,拱顶(拱桥洞的最高点)离水面2m,水面宽 4m如图(2)建立平面直角坐标系,则抛物线的关系式是.图(1)图(2)y = - 1 x2 .2【解析】试题分析:由图中可以看出,所求抛物线的顶点在原点,对称轴为 y 轴,可设此函数解析式为:y=ax2,利用待定系数法求解.试题解析:设此函数解析式为: y = ax2 , a 0 ;那么(2,
7、-2)应在此函数解析式上 则- 2 = 4a1即 得 a = - ,2那么 y = - 1 x2 2考点:根据实际问题列二次函数关系式.练习 1某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子 oa,o 恰在水面中心,安置在柱子顶端 a 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过 oa 的任一平面上, 抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度 y(米)与水平距离 x(米)之间的关系是 y = -x 2 + 2x + 5 .请回答下列问题:4(1) 柱子 oa 的高度是多少米?(2) 喷出的水流距水平面的最大高度是多少米?(3) 若
8、不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?2一座桥如图,桥下水面宽度 ab 是 20 米,高 cd 是 4 米.要使高为 3 米的船通过,则其宽度须不超过多少米.(1) 如图 1,若把桥看做是抛物线的一部分,建立如图坐标系.求抛物线的解析式;要使高为 3 米的船通过,则其宽度须不超过多少米?(2) 如图 2,若把桥看做是圆的一部分.求圆的半径;要使高为 3 米的船通过,则其宽度须不超过多少米?三、利用抛物线解决最大利润问题例题 1某市政府大力扶持大学生创业李明在政府的扶持下投资销售一种进价为每件 20 元的护眼台灯销售过程中发现,每月销售量 y(件)与销售单价 x(元
9、)之间的关系可近似的看做一次函数: y10x500.(1) 设李明每月获得利润为 w(元),当销售单价定为多少元时,每月可获得最大利润?(6 分)(2) 如果李明想要每月获得 2 000 元的利润,那么销售单价应定为多少元?(3 分)(3) 物价部门规定,这种护眼台灯的销售单价不得高于 32 元,如果李明想要每月获得的利润不低于 2 000 元,那么他每月的成本最少需要多少元?(成本进价销售量) (3 分)答案:(1)35;(2)30 或 40;(3)3600.【解析】试题分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,根据利润=(定价- 进价)销售量,从而列出关系式;
10、(2)令 w=2000,然后解一元二次方程,从而求出销售单价;(3)根据函数解析式,利用一次函数的性质求出最低成本即可试题解析:(1)由题意得出: w = (x - 20)y = (x - 20)(-10x + 500)= -10x2 + 700x -10000 , a = -10 0, - b = 35 ,2a当销售单价定为 35 元时,每月可获得最大利润(2)由题意,得: -10x2 + 700x -10000 = 2000 , 解这个方程得:x1=30,x2=40李明想要每月获得 2000 元的利润,销售单价应定为 30 元或 40 元(3) a = -10 0 ,抛物线开口向下. 当
11、30x40 时,w2000.x32,当 30x32 时,w2000.设成本为 p(元),由题意,得: p = 20(-10x + 500)= -200x + 10000 ,k= - 2000,p 随x 的增大而减小当 x=32 时,p 最小=3600答:想要每月获得的利润不低于 2000 元,每月的成本最少为 3600 元 考点:二次函数的应用练习 1某玩具批发商销售每只进价为 40 元的玩具,市场调查发现,若以每只 50 元的价格销售,平均每天销售 90 只,单价每提高 1 元,平均每天就少销售 3 只(1) 平均每天的销售量 y(只)与销售价 x(元只)之间的函数关系式为;(2) 求该批发
12、商平均每天的销售利润 w(元)与销售只 x(元只)之间的函数关系式;(3) 物价部门规定每只售价不得高于 55 元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元2. 为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克 20 元,市场调查发现,该产品每天的销售量y(千克)与销售价 x(元/千克)有如下关系: y = -2x + 80 . 设这种产品每天的销售利润为 w 元.(1) 求 w 与x 之间的函数关系式;(2) 该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
13、3. 某公司营销 a, b 两种产品,根据市场调研,发现如下信息:信息 1:销售 a 种产品所获利润 y (万元)与所售产品 x (吨)之间存在二次函数关系y = ax2 + bx .当 x = 1 时, y = 1.4 ;当 x = 3 时, y = 3.6 信息 2:销售 b 种产品所获利润 y (万元)与所售产品 x (吨)之间存在正比例函数关系 y = 0.3x 根据以上信息,解答下列问题:(1)求二次函数解析式;(2)该公司准备购进 a, b 两种产品共 10 吨,请设计一个营销方案,使销售 a, b 两种产品获得的利润之和最大,最大利润是多少?4. 为鼓励大学毕业生自主创业,某市政
14、府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件 10 元,出厂价为每件 12 元,每月销售量 y (件)与销售单价 x (元)之间的关系近似满足一次函数: y = -10x + 500 (1) 李明在开始创业的第一个月将销售单价定为 20 元,那么政府这个月为他承担的总差价为多少元?(2) 设李明获得的利润为 w (元),当销售单价定为多少元时,每月可获得最大利润?(3) 物价部门规定,这种节能灯的销售单价不得高于 25 元如果李明想要每月获得的利润不低于
15、 3000元,那么政府为他承担的总差价最少为多少元?5. 某文具店销售一种进价为 10 元/个的签字笔,物价部门规定这种签字笔的售价不得高于 14 元/个,根据以往经验:以 12 元/个的价格销售,平均每周销售签字笔 100 个;若每个签字笔的销售价格每提高 1 元, 则平均每周少销售签字笔 10 个. 设销售价为 x 元/个.(1) 该文具店这种签字笔平均每周的销售量为 个(用含 x 的式子表示);(2) 求该文具店这种签字笔平均每周的销售利润 w(元)与销售价 x(元/个)之间的函数关系式;(3) 当 x 取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?6. 一汽车租
16、赁公司拥有某种型号的汽车 100 辆公司在经营中发现每辆车的月租金 x(元)与每月租出的车辆数(y)有如下关系:x3000320035004000y100969080(1) 观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数 y(辆) 与每辆车的月租金 x(元)之间的关系式.(2) 已知租出的车每辆每月需要维护费 150 元,未租出的车每辆每月需要维护费 50 元用含x(x3000)的代数式填表:租出的车辆数未租出的车辆数 租出每辆车的月收 益所有未租出的车辆每月的维护 费(3) 若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出
17、公司的最大月收益是多少元4、利用二次函数解决动点问题例 1 如图 8,如图 9,在平行四边形 abcd 中,ad=4 cm,a=60,bdad. 一动点 p 从 a 出发,以每秒 1cm 的速度沿 abc 的路线匀速运动,过点 p 作直线 pm,使pmad .(1) 当点 p 运动 2 秒时,设直线 pm 与 ad 相交于点 e,求ape 的面积;(2) 当点 p 运动 2 秒时,另一动点 q 也从 a 出发沿 abc 的路线运动,且在 ab 上以每秒 1 cm 的速度匀速运动,在 bc 上以每秒 2 cm 的速度匀速运动. 过 q 作直线 qn,使 qnpm. 设点 q 运动的时间为 t 秒
18、(0t10),直线 pm 与 qn 截平行四边形 abcd 所得图形的面积为 s cm2 . 求 s 关于 t 的函数关系式; 求 s 的最大值.3解:(1) 当点 p 运动 2 秒时,ap=2 cm,由a=60,知 ae=1,pe=. sape= 3 .23(2) 当 0t6 时,点 p 与点 q 都在 ab 上运动,设 pm 与 ad 交于点 g,qn 与 ad 交于点 f,则aq=t,af= t ,qf= 3 t ,ap=t+2,ag=1+ t ,pg=+ 3 t .22223 . 此时两平行线截平行四边形 abcd 的面积为 s= 3 t +223当 6t8 时,点 p 在 bc 上运
19、动,点 q 仍在 ab 上运动. 设 pm 与 dc 交于点 g,qn 与 ad 交于点 f,则aq=t,af= t ,df=4- t ,qf= 3 t ,bp=t-6,cp=10-t,pg= (10 - t),32223而 bd= 4,故此时两平行线截平行四边形 abcd 的面积为 s= - 5 3 t 2 +1083t - 34.333当 8t10 时,点 p 和点 q 都在 bc 上运动.设 pm 与 dc 交于点 g,qn 与 dc 交于点 f,则 cq=20- 2t,qf=(20-2t),cp=10-t,pg=(10 - t). 此时两平行线截平行四边形 abcd 的面积为 s= 3
20、 3 t 2 - 303t +150. 3 t +32,(0 t 6)5 3 t 22故 s 关于 t 的函数关系式为 s= -2 +10 3t - 34 3, ( 6 t 8)t3 3 8 22 - 30 3t +150 3. (8 t 10)7 3当 0t6 时,s 的最大值为 233当 6t8 时,s 的最大值为6 当 8t10 时,s 的最大值为63所以当 t=8 时,s 有最大值为 6.初中数学专项训练:实际问题与二次函数参考答案一、1(1)y=2x2-2ax+a2(2) 有.当点 e 是 ab 的中点时,面积最大.【解析】本题考查了二次函数的应用.(1) 先由 aas 证明aefd
21、he,得出 ae=dh=x 米,af=de=(a-x)米,再根据勾股定理,求出 ef2,即可得到 s 与x 之间的函数关系式;(2) 先将(1)中求得的函数关系式运用配方法写成顶点式,再根据二次函数的性质即可求解 解:四边形 abcd 是边长为 a 米的正方形,a=d=90,ad= a 米四边形 efgh 为正方形,feh=90,ef=eh在aef 与dhe 中,a=d,aef=dhe=90-deh,ef=ehaefdhe(aas),ae=dh=x 米,af=de=(a-x)米,y=ef2=ae2+af2=x2+(a-x)2=2x2-2ax+ a2, 即 y=2x2-2ax+ a2;aa2(2
22、)y=2x2-2ax+ a2=2(x- )2+ ,24a当 x= 时,s 有最大值2故当点 e 是 ab 的中点时,面积最大2、练习 1595(1)(2)(3)442【解析】本题考查了二次函数的应用.(1) 本题需先根据已知条件把 x=0 代入抛物线的解析式,从而得出 y 的值,即可求出答案(2) 通过抛物线的顶点坐标求得5(3) 本题需先根据已知条件把 y=0 代入抛物线求出所要求的式子,再得出 x 的值,即可求出答案 解:(1)把 x=0 代入抛物线的解析式5得:y= ,即柱子 oa 的高度是44(2) 由题意得:当 x= -2=19 时,y= ,即水流距水平面的最大高度2 (-1 4(3
23、) 把 y=0 代入抛物线得: - x2 + 2x + 5 =0,解得,x = - 1 (舍去,不合题意),x = 5124225故水池的半径至少要 米才能使喷出的水流不至于落在池外2712(1) y = - x2 + 4 ;10;(2)14.5; 425【解析】试题分析:(1)利用待定系数法求函数解析式即可;根据题意得出 y=3 时,求出 x 的值即可;(2)构造直角三角形利用 bw2=bc2+cw2,求出即可;在 rtwgf 中,由题可知,wf=14.5,wg=14.51=13.5,根据勾股定理知:gf2=wf2wg2,求出即可 试题解析:(1)设抛物线解析式为: y = ax2 + c
24、,桥下水面宽度 ab 是 20 米,高 cd 是 4米,100a + c = 0a = - 1a(10,0),b(10,0),d(0,4), c = 4,解得: c = 425 ,抛物线解析式为:1y = -x2 + 4 ;251要使高为 3 米的船通过, y = 3 ,则3 = -x2 + 4 ,解得: x = 5 ,ef=10 米;25(2)设圆半径 r 米,圆心为 w,bw2=bc2+cw2, r 2 = (r - 4)2 +102 ,解得: r = 14.5 ;在 rtwgf 中,由题可知,wf=14.5,wg=14.51=13.5,根据勾股定理知:gf2=wf2wg2,即77gf2=
25、14.5213.52=28,所以 gf= 2,此时宽度 ef= 4米考点:1二次函数的应用;2垂径定理的应用三、1(1)y=-3x+240;(2)w=-3x2+360x-9600;(3)定价为 55 元时,可以获得最大利润是 1125 元.【解析】试题分析:(1)根据题意知销售量 y(只)与销售价 x(元只)之间的函数关系式为 y=90-3(x-50)=- 3x+240;(2)根据“总利润=每件商品的利润销售量”可知 w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600; (3)求获得最大利润,也就是求函数 w=-3x2+360x-9600 的最大值.试题解析:(
26、1)y=90-3(x-50)即 y=-3x+240;(2)w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;(3) 当 x60,y 随x 的增大而减小, 当 x=55 时,w 最大=1125所以定价为 55 元时,可以获得最大利润是 1125 元. 考点:(1)一次函数;(2)二次函数2(1) w = -2x2 + 120x -1600 ;(2)该产品销售价定为每千克 30 元时,每天销售利润最大,最大销售利润 200 元.【解析】试题分析:(1)根据销售额=销售量销售价单 x,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
27、试题解析:(1)由题意得: w = (x - 20) y = (x - 20)(-2x + 80)= -2x2 + 120x -1600 ,w 与x 的函数关系式为: w = -2x2 + 120x -1600 .(2) w = -2x2 + 120x -1600 = -2(x - 30)2 + 200 ,20,当 x=30 时,w 有最大值w 最大值为 200.答:该产品销售价定为每千克 30 元时,每天销售利润最大,最大销售利润 200 元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.3见解析【解析】试题分析:(1)因为当 x=1 时,y=1.4;当 x=3
28、 时,y=3.6,代入 y = ax2 + bxa + b = 1.4得9a +3b = 3.6a = -0.1解得b = 1.5,所以,二次函数解析式为 y=-0.1x2+1.5x;(2)设购进 a 产品 m 吨,购进 b 产品(10-m)吨,销售 a、b 两种产品获得的利润之和为 w 元,根据题意可列函数关系式为:w=-0.1m2+1.5m+0.3(10-m)=-0.1m2+1.2m+3=-0.1(m-6)2+6.6,因为-0.10,根据二次函数的性质知当 m=6 时,w 有最大值 6.6,试题解析:(1)当 x=1 时,y=1.4;当 x=3 时,y=3.6,a + b = 1.4 9a
29、 + 3b = 3.6a = -0.1解得,b = 1.5所以,二次函数解析式为 y=-0.1x2+1.5x;3 分(2)设购进 a 产品 m 吨,购进 b 产品(10-m)吨,销售 a、b 两种产品获得的利润之和为 w 元, 则 w=-0.1m2+1.5m+0.3(10-m)=-0.1m2+1.2m+3=-0.1(m-6)2+6.6,-0.10,当 m=6 时,w 有最大值 6.6,购进 a 产品 6 吨,购进 b 产品 4 吨,销售 a、b 两种产品获得的利润之和最大,最大利润是 6.6 万元 考点:1.待定系数法求解析式.2.二次函数性质.4(1)政府这个月为他承担的总差价为 600 元
30、;(2)当销售单价定为 30 元时,每月可获得最大利润4000;(3)销售单价定为 25 元时,政府每个月为他承担的总差价最少为 500 元.【解析】试题分析:(1)根据每月销售量 y (件)与销售单价 x (元)之间的关系可求得每月销售量,又由单价和成本间关系得到每件节能灯的差价,则可得到总差价.(2)求每月可获得最大利润,即为求该二次函数的最大值,将二次函数配方法,可得该函数的最大值.(3) w 3000 同时满足 x 25 ,根据函数图象的性质知道, k 0 随 x 的增大而减小,当 x = 25 时,该函数有最大值时, p 有最小值 500.试题解析:(1)当 x = 20 时, y
31、= -10x + 500 = -10 20 + 500 = 300 , 300 (12 - 10) = 300 2 = 600 ,政府这个月为他承担的总差价为 600 元。(2)依题意得, w= (x -10) (-10x+ 500)= -10x2 + 600x - 5000 = -10(x - 30)2 + 4000 ,q a = - 10 0 ,当 x = 30 时, w 有最大值 4000.当销售单价定为 30 元时,每月可获得最大利润 4000(3)由题意得: -10x2 + 600x - 5000 = 3000 , 解得: x1 = 20 , x2 = 40 .q a = - 10
32、0 ,抛物线开口向下,结合图象可知:当20 x 40 时, w 3000 .又q x 25 ,当20 x 25 时,w3000. 设政府每个月为他承担的总差价为 p 元, p = (12 -10)(-10x + 500) = -20x + 1000 .q k = - 20 0 , p 随 x 的增大而减小.当 x = 25 时, p 有最小值 500.销售单价定为 25 元时,政府每个月为他承担的总差价最少为 500 元.【考点】1.二次函数的性质;2.二次函数的图象;3.二次函数的综合应用.5(1)(22010x);(2) w = -10x2 + 320x - 2200 ()当 x=14 时
33、,该文具店这种签字笔平均每周的销售利润最大是 320 元【解析】试题分析:用含x 的式子表示文具店这种签字笔平均每周的销售量为(22010x)个,列出函数关系式w = (220 -10x)(x -10) ,再运用二次函数的性质解决问题,由题意可知10 x 14 所以 x=1时,w 最大为 320.试题解析:(1)(22010x);(2) w = (220 -10x)(x -10)3 分= -10x2 + 320x - 22005 分w = -10x2 + 320x - 2200= -10(x -16)2 + 3606 分抛物线 w = -10x2 + 320x - 2200 的开口向下,在对称
34、轴直线 x=16 的左侧, w 随 x 的增大而增大.8 分由题意可知10 x 14 ,9 分当 x=14 时, w 最大为 320.当 x=14 时,该文具店这种签字笔平均每周的销售利润最大是 320 元. 考点:根据实际问题列函数关系式 二次函数的性质6解:(1)由表格数据可知 y 与 x 是一次函数关系,设其解析式为y = kx + b ,3000k + b = 100k = - 1将(3000,100),(3200,96)代入得3200k + b = 96 ,解得: 50 。 y = - 1 x + 160。50b = 160将(3500,90),(4000,80)代入检验,适合。y 与 x 间的函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省鄂州市、黄冈市2025年高三第一次调研测试化学试卷含解析
- 湖北省昆明市黄冈实验学校2025届高三第二次诊断性检测化学试卷含解析
- 如何有效管理自己的情绪
- 2025届贵州省毕节市织金第一中学高考冲刺化学模拟试题含解析
- 子痫的护理诊断
- 2025年高效建筑中水处理回收系统项目合作计划书
- 广东省梅州市皇华中学2025届高三冲刺模拟化学试卷含解析
- 第三单元正比例、反比例评估检测题( A 卷)(单元测试)无答案六年级下册数学冀教版
- 江苏省盐城市、南京市2025年高三第一次调研测试化学试卷含解析
- 学校校本培训材料
- 不锈钢栏杆安装施工方案
- 《莎士比亚研究》自考核心题库(带详解)
- 四川省自贡市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 大花红景天课件
- JJF 1109-2003 跳动检查仪校准规范-(高清现行)
- 水利水保监理过程中承包商、监理方用空表
- 军事地形学地形图基本知识
- 日产汽车QRQC运用手册
- 【高中地理校本课程】生活中的地理
- 【毕业论文】知识竞赛抢答器PLC设计
- 工商管理专业硕士
评论
0/150
提交评论