




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆锥曲线 解答题12大题型 解题套路归纳:【高考数学中最具震撼力的一个解答题!】注:【求解完第一问以后,】圆锥曲线题10大题型:(1)弦长问题(2)中点问题(3)垂直问题(4)斜率问题(5)对称问题(6)向量问题(7)切线问题(8)面积问题(9)最值问题(10)焦点三角形问题。中的2-4类;分门别类按套路求解;1.高考最重要考: 直线与椭圆,抛物线的位置关系。第一问最高频考(总与三个问题有关):(1);(2);(3);2.圆锥曲线题,直线代入圆锥曲线的“固定3步走”:-;;3.圆锥曲线题固定步骤前9步:-;-;4.圆锥曲线题题型一:弦长问题的固定套路:STEP1:首先看是否属于3种特殊弦长:(
2、1)圆的弦长问题;(2)中点弦长问题(3)焦点弦长问题;(1)圆的弦长问题:(2法)首选方法:垂径定理+勾股定理:图示:-;公式为:-;其中求“点线距”的方法:;次选:弦长公式;(2)中点弦长问题:(2法)首选方法:“点差法”,结论:中点弦公式:椭圆:(公式一)-;(公式二)-;副产品:两直线永远不可能垂直!原因:_;【两直线夹角的求法:(夹角公式)_;】双曲线(公式一)-;(公式二)-;抛物线:形式一:_;(公式一)-;(公式二)-;形式2:_;(公式一)-;(公式二)-;附:“点差法”步骤:椭圆:“点”_;_;“差”_;“设而不求法”_;“斜率公式”+“中点公式”_;_;_;得公式:(公式
3、一)-;(公式二)-;附:“点差法”步骤:抛物线;形式一_;:“点”_;_;“差”_;“设而不求法”_;“斜率公式”+“中点公式”_;_;_;得公式:(公式一)-;(公式二)-;附:“点差法”步骤:抛物线:形式二:_;“点”_;_;“差”_;“设而不求法”_;“斜率公式”+“中点公式”_;_;_;得公式:(公式一)-;(公式二)-;法二次选:中点公式;(2)焦点弦长问题:(2法)椭圆和双曲线:(公式一)左焦点弦长:-;图示:_;右焦点弦长:-;图示:_;公式一适用于:_;(公式二)-;其中:_;适用于:_; 抛物线:形式一:_;公式一:_;图示:_;公式一适用于:_;焦点弦公式二:_;公式2适
4、用于:_; STEP2:除了这三种特殊弦长以外,其余弦长求解都用【弦长公式】(保底方法);【弦长公式】3类型:【类1】_;_;_;适用于:_;【类2】_;_;_;适用于:_;【类3】_;_;_;适用于:_;5.圆锥曲线题题型二:中点问题的固定套路:【2法】首选方法:中点弦公式;次选:中点公式+韦达定理:-;-;-;-;6. 圆锥曲线题题型三:垂直问题的固定套路:首先看是否是2种特殊的垂直问题:(1)涉及圆的直径问题:【2法】:法一:“圆的直径式方程”_;法二:向量垂直法:_;_;(2)“原点张角垂直问题”首选方法:向量垂直法+韦达定理【最快!】图示:_;套路:_;_;7圆锥曲线题题型四:对称问
5、题的固定套路:“结论法+代入法最快!”【2题型】(1)中心对称问题:结论一:【原点对称】_;结论二:【任意点对称】_;(2)轴对称问题:结论一:【x轴对称】_;结论二:【y轴对称】_;结论三【x=a对称】-;结论四【y=b对称】:_;结论5【y=x对称】:_;结论6【y=-x对称】:_;结论7【y=x+c对称】:_;结论8【y=-x+c对称】:_;结论9【任意直线Ax+By+C=0对称】:_;8.圆锥曲线题题型五:切线问题的固定套路:【大纲内2题型】(1)圆的切线问题:【3套路8结论】(1)“点线距等于半径”_;(2)斜率乘积等于-1;_;(3)勾股定理:_;结论:(1)【切线长公式】_;(2
6、)【圆心在原点时】_;(3)【切点弦直线方程】_;(4)_;(5)_;(6)_;(7)_;(2)抛物线的切线问题:【导数法】(2形式)【形式一】_;_;【形式二】_;_;9.圆锥曲线题题型六:焦点三角形问题的固定套路:_+_+_+_+_+_+_;【相关结论】:【两焦半径】左焦半径_;右焦半径_;特别的,通径:_;半通径:_;【三边长】_;_;_;【周长】_;【两焦半径乘积】_;【焦点三角形面积】_;_;作用:_;_;【余弦定理式】_;_;_;【正弦定理式】_;【求解离心率】_;_;_;_;_;【焦点三角形中内心公式】_;10.圆锥曲线题题型七:向量问题的固定套路:【平行问题,垂直问题,夹角问题
7、这三种问题“向量法最快”!平解几中,向量问题均采用“坐标运算”最佳!】首先:坐标化【平面向量10公式】【向量平行】_;【向量垂直】_;【向量夹角公式】_;【加减式】_;【数乘式】_;【向量数量积公式】_;【向量模的公式】_;【量模转化公式】_;【向量平方差公式】_;【向量完全平方公式】_;11.圆锥曲线题题型八:夹角问题的固定套路:【2类】(1)定性讨论型【向量法最快!】“成锐角时=向量数量积0;” “成钝角时=向量数量积0;” “成直角时=向量数量积=0;”(2)定量计算型:【2法】(1)向量数量积公式_;(2)两直线夹角公式_;12.圆锥曲线题题型9:斜率问题的固定套路:方法基础:斜率3公
8、式:_;_;_;【凡与中点相关的斜率问题】首选:中点弦公式。【凡与垂直相关的斜率问题】首选:斜率乘积等于-1。【凡与夹角相关的斜率问题】首选:两直线夹角公式_和 三角函数两角和的正切公式:_。【凡与椭圆,双曲线的顶点三角形相关的斜率问题】首选:_;_;13. 圆锥曲线题题型10:最值问题的固定套路:【6大相关结论】圆中最长的弦=_;圆中最短的弦=_; 椭圆:a+c=_; a-c=_; 通径=_;椭圆,双曲线的通径公式:_; 抛物线的通径公式:_; 焦点三角形的最大面积=_; 【通性通法】:凡与弦长有关的最值问题,首选:弦长公式+配方法;【配方公式_】14. 圆锥曲线题题型11:面积问题的固定套路:【2原则】凡求三角形面积,首选公式:_
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 党校物业合同样本
- 书写商业合同样本
- 企业借款保证合同样本
- 公司食堂厨师合同样本
- 不锈钢架子购销合同样本
- 公司出货合同样本
- 企业对公账户结算合同样本
- 共享股东招募合同样本
- 2025版委托维修合同范本范文
- 2025关于建设工程技术咨询合同范本
- 低压台区线损治理探析
- 案件审计服务投标方案(技术标)
- TY/T 1103-2023群众体育赛事活动办赛指南编制内容与评估指引
- 英语语言与文化智慧树知到课后章节答案2023年下华侨大学
- 2024年中考化学复习教学建议-把握中考方向、共研备考策略课件
- 拼多多民事起诉状模板
- 【数字普惠金融的发展研究-以蚂蚁集团为例12000字(论文)】
- 挖机上楼拆迁施工方案
- 2023版个人征信模板简版(可编辑-带水印)
- 外教社新编英语语法教程(第6版)PPT课件Unit-22
- 2023年陕西特岗学前教育学科真题真题
评论
0/150
提交评论