版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、排列组合公式及恒等式推导、证明(word版)说明:因公式编辑需特定的公式编辑插件,不管是word还是pps附带公式编辑经常是出错用不了。下载此word版的,记得下载mathtype公式编辑器哦,否则乱码一堆。如果想偷懒可下截同名的截图版。另外,还有ppt课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。 一、排列数公式: 推导:把n个不同的元素任选m个排次序或n个全排序,按计数原理分步进行:第一步,排第一位: 有 n 种选法;第二步,排第二位: 有(n-1) 种选法;第三步,排第三位: 有(n-2) 种选法; 第m步,排第m位: 有(n-m+1)种选法; 最后一步,排最后一位:有 1
2、 种选法。根据分步乘法原理,得出上述公式。 二、组合数公式:推导:把n个不同的元素任选m个不排序,按计数原理分步进行:第一步,取第一个: 有 n 种取法;第二步,取第二个: 有(n-1) 种取法;第三步,取第三个: 有(n-2) 种取法; 第m步,取第m个: 有(n-m+1)种取法; 最后一步,取最后一个:有 1 种取法。上述各步的取法相乘是排序的方法数,由于选m个,就有m!种排排法,选n个就有n!种排法。故取m个的取法应当除以m!,取n个的取法应当除以n!。遂得出上述公式。证明:利用排列和组合之间的关系以及排列的公式来推导证明。 将部分排列问题分解为两个步骤:第一步,就是从n个球中抽m个出来
3、,先不排序,此即定义的组合数问题;第二步,则是把这m个被抽出来的球全部排序,即全排列。根据乘法原理, 即:组合公式也适用于全组合的情况,即求c(n,n)的问题。根据上述公式, c(n,n)=n!/n!(n-n)!=n!/n!0!=1。这一结果是完全合理的,因为从n个球中抽取所有n个出来,当然只有1种方法。 三、重复组合数公式:重复组合定义:从n个不同的元素中每次取一个,放回后再取下一个,如此连续m次所得的组合。重复组合数公式: (m可小于、大于、等于n,n1)推导:可以把该过程看作是一个“放球模型”:n个不同的元素看作是n个格子,其间一共有(n-1)块相同的隔板,用m个相同的小球代表取m次;则
4、原问题可以简化为将m个不加区别的小球放进n个格子里面,问有多少种放法;这相当于m个相同的小球和(n-1)块相同的隔板先进行全排列:一共有(m+n-1)!种排法,再由于m个小球和(n-1)块隔板是分别不加以区分的,所以除以重复的情况:m!*(n-1)!于是答案就是:四、不全相异的全排列在不全相异的n个物体中,假设有n1个物体是相同的,n2个五题是相同的,nk个物体是相同的。n个物体中不相同的物体种类数一共有k种。那么,这些物体的全排列数是n!/(n1!n2!nk!)。可以想成:n个物体直接全排列,排列完了以后,去重,第一种物体有n1!种,第二种物体有n2!种,以此类推。 例:有3个红球,2个白球
5、,把这五个球排成一行,问有多少种排法?红球和红球没有区别,白球和白球没有区别。答:一共有10种, aaabb,aabab,aabba,abaab,ababa,baaab,baaba,abbaa,babaa,bbaaa。 五、排列恒等式的证明: 证明:右边= 左边=右边 证明:右边= 左边=右边 证明:右边= 左边=右边 证明:右边= 右边=左边证明:右边= 证明:左边=(2-1)1!+(3-1)2!+(4-1)3!+(n+1-1)n! =2!-1!+3!-2!+4!-3!(n+1)!-n! =(n+1)!-1! =右边 六、组合恒等式的证明互补性质:取出有多少种,剩下就有多少种根据分类计数原理
6、:要么含有新加元素要么不含新加元素分类计数原理:要么含有新加元素要么不含新加元素 首先明弄清组合的两个性质公式:证明: 证明:右边= 证明:右边= =左边证明:根据组合性质,左边各式可写成: 左右两边相加即得: 证明: 用数学归纳法证明。 1)当n=1时,所以等式成立。 2)假设n=k时,(k1,kn*)时等式成立。 即: 当n=k+1时, 等式也成立 由1)、2)得,等式对nn*都成立。 也可用二项式定理证明(略) 证明:用归纳法同上(略) 也可利用上述结论证明(略) 本课件尽量避开用二项式定理,但这比较简单,暂且用一下: 设 由(1+1)n可得:a+b=2n=22n-1 由(1-1)n可得a-b=0 a=b=2n-1 (不懂的去学学二项式定理) 证明: 由可得:(还记得这个恒等式吗,不记得就回过头去看的证明) 左边 注:同时利用了的结论。 rminm,n 用二项式定理证明太麻烦了。能偷懒就不要太勤快了。 观察左边的每一项,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车配件赠与协议
- 二零二五年敬老院养老用品销售与售后服务合同规范3篇
- 2025版教育培训机构合作协议样本3篇
- 2025版学生实训基地实习就业保障服务合同3篇
- 电梯维修工程师培训:2025年专业课件
- 二零二五年度生鲜配送与冷链物流配送中心建设合同
- 2025年度高端市场西瓜苗专供合同
- 2025年度瓷砖销售渠道拓展与培训合同
- 二零二五年度综合管廊冠梁劳务承建合同
- 2025年度艺术培训机构与投资基金合作协议
- 《社会工作实务》全册配套完整课件3
- 单位违反会风会书检讨书
- 2024年4月自考00832英语词汇学试题
- 《电力用直流电源系统蓄电池组远程充放电技术规范》
- 《哪吒之魔童降世》中的哪吒形象分析
- 信息化运维服务信息化运维方案
- 汽车修理厂员工守则
- 公安交通管理行政处罚决定书式样
- 10.《运动技能学习与控制》李强
- 冀教版数学七年级下册综合训练100题含答案
- 1神经外科分级护理制度
评论
0/150
提交评论