全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 导数及其应用一 导数概念的引入1. 导数的物理意义:瞬时速率。一般的,函数在处的瞬时变化率是,我们称它为函数在处的导数,记作或,即=例1 在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系 运动员在t=2s时的瞬时速度是多少? 解:根据定义 即该运动员在t=2s是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点趋近于时,直线与曲线相切。容易知道,割线的斜率是,当点趋近于时,函数在处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为的导函数. 的导函数有时也记作,即二.导数的计算1.函数的导数2.函数的导数3.函数的导数4.函数的导数基本初等函数的导数公式:1若(c为常数),则;2 若,则;3 若,则4 若,则;5 若,则6 若,则7 若,则8 若,则导数的运算法则1. 2. 3. 复合函数求导和,称则可以表示成为的函数,即为一个复合函数三.导数在研究函数中的应用1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系:在某个区间内,如果,那么函数在这个区间单调递增;如果,那么函数在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数的极值的方法是:(1) 如果在附近的左侧,右侧,那么是极大值;(2) 如果在附近的左侧,右侧,那么是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数在上的最大值与最小值的步骤(1) 求函数在内的极值;(2) 将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,求函数的最大(小)值,从而解决实际问题第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或)时成立,这是递推的基础; B.假设在n=k时命题成立 C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n=,且)结论都成立。考点三 证明1. 反证法:2. 分析法:3. 综合法:第一章 数系的扩充和复数的概念考点一:复数的概念(1) 复数:形如的数叫做复数,和分别叫它的实部和虚部.(2) 分类:复数中,当,就是实数; ,叫做虚数;当时,叫做纯虚数.(3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.(4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5) 复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫做虚轴。(6) 两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。考点二:复数的运算1.复数的加,减,乘,除按以下法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版固定资产互借互贷协议样式版B版
- 2022端午节活动策划方案三篇范文
- 2025年COD自动在线监测仪项目规划申请报告范文
- 2024-2025学年谢家集区数学三年级第一学期期末监测试题含解析
- 2025年低压接触器项目提案报告
- 员工工作计划(15篇)
- 九年级中秋节满分作文5篇
- 中专自我鉴定范文集合五篇
- 教学改革学期工作总结简短范文5篇模板
- 常用的员工个人工作总结12篇
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 工程伦理-工程案例分析
- 物质与意识的辩证关系
- 小学英语考试教师总结反思8篇
- 缆车合唱钢琴伴奏谱
- 前列腺增生课件
- 多智能体仿真支撑技术、组织与AI算法研究
- 北京市2022-2023学年三年级上学期语文期末试卷(含答案)
- 安全管理中人因素
- 餐厅年度总结计划
- 83广东省深圳市宝安区2023-2024学年六年级上学期期末数学试卷
评论
0/150
提交评论