




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 10高三数学理科统计案例总复习教学案本资料为 WoRD 文档,请点击下载地址下载全文下载地址 第十三章统计案例高考导航考试要求重难点击命题展望1.理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、茎叶图,理解它们各自的特点,理解样本数据标准差的意义和作用,会计算数据标准差,能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想,会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.会作两个有关联变量的散点图,会利用散点图认识变量间的相关关系,了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程,了解回归的基本思想、方法及其简单应用.4.了解独立性检验(只要求 22 列联表)的基本思想、方法及其简单应用.本章重点:1.三种抽样方法的区别、2 / 10联系及操作步骤.2.样本频率分布直方图和茎叶图.3.用样本估计总体的思想.本章难点:回归直线方程与独立性检验.统计多数以选择题和填空题形式考查,大题只在个别省的考题中出现过.难度属于基础题和中档题.考点往往集中体现在抽样方法、频率分布图表这两个方面.另外,应注意统计题反映出来的综合性与应用性,如与数列、概率等的综合,用统计方法提供决策、制定方案等,以此考查学生搜集处理信息及分析解决问题的能力.知识网络抽样方法与用样本估计总体典例精析题型一抽样方法【例 1】某校有教师 200 人,男学生 1200 人,女学生1000 人,用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知女学生抽取的人数为 80 人,则 n 的值为.【解析】根据分层抽样的意义,n20012001000801000,解得 n192.【点拨】现实中正确的分层抽样一般有三个步骤:首先,辨明突出的统计特征和分类.其次,确定每个分层在总体上3 / 10的比例.利用这个比例,可计算出样本中每组(层)应抽取的人数.最后,必须从每层中抽取独立简单随机样本.【变式训练 1】从某厂生产的 802 辆轿车中随机抽取 80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.【解析】第一步,将 802 辆轿车用随机方式编号.第二步,从总体中剔除 2 辆(剔除方法可用随机数表法),将剩余的 800 辆轿车重新编号(分别为001,002,003,800),并分成 80 段.第三步,在第一段 001,002,010 这十个编号中用简单随机抽样抽出一个(如 005)作为起始号码.第四步,将编号为 005,015,025,795 的个体抽出,组成样本.题型二频率分布直方图【例 2】(XX 湖南)如图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中 x 的值;(2)若将频率视为概率,从这个城市随机抽取 3 位居民(看作有放回的抽样),求月均用水量在 3 至 4 吨的居民数X 的分布列和数学期望.【解析】(1)依题意及频率分布直方图知x1,4 / 10解得 x(2)由题意知 XB(3,),因此P(X0)c03,P(X1)c13,P(X2)c23,P(X3)c33,故随机变量 X 的分布列为X0123X 的数学期望为 E(X)3(或 E(X)123)【点拨】从频率分布直方图读取数据时,要特别重视组距,纵坐标是频率除以组距,故长方形的面积之和为 1.【变式训练 2】如图是容量为 100 的样本的频率分布直方图,试根据数据填空:(1)样本数据落在10,14)内的频数为;(2)样本数据落在6,10)内的频率为;(3)总体落在2,6)内的频率为.【解析】(1)样本落在10,14)内的频数为410036.(2)样本落在6,10)内的频率为4(3)样本落在2,6)内的频率为4,所以总体落在2,6)内5 / 10的频率约为题型三平均数、方差的计算【例 3】甲、乙两人在相同条件下各射靶 10 次,每次命中环数如下:甲47109568688乙7868678759试问谁 10 次射靶的情况较稳定?【解析】本题要计算两样本的方差,当样本平均数不是整数,且样本数据不大时,可用简化公式计算方差.110(478),110(789),s2 甲110(42728210),s2 乙110(72829210),因为 s2 甲s2 乙,所以乙 10 次射靶比甲 10 次射靶情况稳定.【点拨】平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据的离散程度就越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.【变式训练 3】(XX 北京市东城区)在一次数学统考后,某班随机抽取 10 名同学的成绩进行样本分析,获得成绩数据的茎叶图如右图.6 / 10(1)计算此样本的平均成绩及方差;(2)现从此样本中随机抽出 2 名学生的成绩,设抽出分数为 90 分以上的人数为 X,求随机变量 X 的分布列和均值.【解析】(1)样本的平均成绩80;方差为 s2110(9280)2(9880)2(9880)2(8580)2(8580)2(7480)2(7480)2(7480)2(6080)2(6080)2175.(2)由题意,随机变量 X0,1,2.P(X0)c27c210715,P(X1)c13c17c210715,P(X2)115.随机变量 X 的分布列为X012PE(X)07151715211535.总结提高1.统计的基本思想是用样本估计总体.这就要求样本具有很好的代表性,而样本良好客观的代表性,则完全依赖抽样方法.2.三种抽样方法中简单随机抽样是最基本的抽样方法,是其他两种方法的基础,它们的共同点都是等概率抽样.适用范围不同,要根据总体的具体情况选用不同的方法.3.对于总体分布,总是用样本的频率分布对它进行估计.7 / 104.用样本估计总体,一般分成以下几个步骤:先求样本数据中的最大值和最小值(称为极值),再确定合适的组数和组距,确定分点(每个分点只属于一组,故一般采用半开半闭区间),然后列出频率分布表(准确,查数据容易),画频率分布直方图.两变量间的相关性、回归分析和独立性检验典例精析题型一求回归直线方程【例 1】下表是关于某设备的使用年限(年)和所需要的维修费用(万元)的几组统计数据:x23456(1)若 y 对 x 呈线性相关关系,求出 y 关于 x 的线性回归方程 yx;(2)估计使用年限为 10 年时,维修费用为多少?【解析】(1)因为xiyi,x2i4916253690,且4,5,n5,所以54590516,54,所以回归直线方程为 y(2)当 x10 时,y10,所以估计当使用 10 年时,维修费用约为万元.8 / 10【点拨】当 x 与 y 呈线性相关关系时,可直接求出回归直线方程,再利用回归直线方程进行计算和预测.【变式训练 1】某工厂经过技术改造后,生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据.x3456据相关性检验,y 与 x 具有线性相关关系,通过线性回归分析,求得回归直线的斜率为,那么 y 关于 x 的回归直线方程是 .【解析】先求得,由a 过点(,),则 a,所以回归直线方程是题型二独立性检验【例 2】研究小麦种子经灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下表所示:种子灭菌种子未灭菌合计黑穗病 26184210无黑穗病 50200250合计 76384460试按照原试验目的作统计分析推断.【解析】由列联表得:9 / 10a26,b184,c50,d200,ab210,cd250,ac76,bd384,n460.所以 k2n(adbc)2(ab)(cd)(ac)(bd)460(2620018450)221025076384,由于 k2,所以有 95%的把握认为种子灭菌与否与小麦发生黑穗病是有关系的.【变式训练 2】(XX 东北三省三校模拟)某研究小组为了研究中学生的身体发育情况,在某学校随机抽出 20 名 15至 16 周岁的男生,将他们的身高和体重制成 22 的列联表,根据列联表的数据,可以有%的把握认为该学校15 至 16 周岁的男生的身高和体重之间有关系.超重不超重合计偏高 415不偏高 31215合计 71320附:独立性检验临界值表P(k2k0)(独立性检验随机变量 k2 值的计算公式:k2n(adbc)2(ab)(cd)(ac)(bd)【解析】由表可得10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务管理盈利能力答辩
- 2023四年级数学上册 3 角的度量第1课时 线段、直线、射线和角教学设计 新人教版
- 2023二年级数学下册 五 加与减第8课时 算得对吗2教学设计 北师大版
- 药店执照转让协议与药店承包经营合同6篇
- Unit2第1课时Section A (1a~Pronunciation)教学设计 -2024-2025学年人教版英语七年级上册
- 2023三年级数学上册 一 生活中的大数 学会购物教学设计 冀教版
- 激光表演协议与激光设备买卖合同5篇
- 10 夺取抗日战争和人民解放战争的胜利 第三课时 教学设计-2023-2024学年道德与法治五年级下册(部编版)
- 6《仙人掌与莲》教学设计-2023-2024学年科学三年级下册冀人版
- 25王戎不取道旁李教学设计-2024-2025学年四年级上册语文统编版
- 抽油井检泵作业课件
- 2022年06月2022年广东肇庆广宁县司法局招考聘用政府雇员名师点拨卷V答案详解版(3套版)
- a320飞机空调系统工作原理与使用维护分析
- 施工机具进场检查验收记录
- HSK标准教程4上第1课课件
- 《液压与气动技术项目教程》高职配套教学课件
- 民俗学概论 第一章 概述课件
- 2022年七步洗手法操作考核评分标准
- 过敏性紫癜的护理PPT课件(PPT 33页)
- 基础降水井封井方案
- 110kv变电站电气主接线设计资料全
评论
0/150
提交评论