



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LESSON PLAN FORMATCourse: Bilingual mathGrade Level: grade 2Teacher:BelaDate:Title: sine rule Content: Trigonometry PRE-LESSON PLANNINGLearning Objectives1. Learn to deduct the theorem of sine rule 2. Understand the meaning of sine rule3. Be able to use sine rule to solve questionDesign the AssessmentExercise page 198Design Assessment Rubric (if Needed)TEACHING THE LESSONVocabulary: Materials: IGCSE MATHEMATICS BOOKprocedure1. New knowledge Triangles that arent Right Angled To find unknown sides and angles in non-right angled triangles we can use one or both of 2 rules: the sine rule The cosine rule The next few slides prove the sine rule. The cosine rule is on the next presentation.The Sine RuleABC is a scalene triangle a, b and c are the sides opposite angles A, B and C Draw the perpendicular, h, from C to BA. In CAN,Sin A = In BCN,SinB= So, b sin A=h and asin B=hThe triangle ABC . . . . . can be turned so that BC is the base. We would then get So, We now have and So, The sine rule can be used in a triangle when we know One side and its opposite angle, plus One more side or anglee.g. Suppose we know p, q and angle Q in triangle PQR Tip: We need one complete “pair” to use the sine rule.The angle or side that we can find is the one that completes another pair. Solution: Use Solution: As the unknown is a side, we “flip” the sine rule over. The unknown side is then at the “top”. Application Problems Angle TDA =180 35 = 145 Angle DTA =180 170 = 10SUMMARY The sine rule can be used in a triangle when we know One side and its opposite angle, plusOne more side or angleWe write the sine rule so that the unknown angle or side is on the left of the equation If 2 sides and 1 angle are known we use: If 1 side and 2 angles are known we use: ExercisesCheck for Student Understanding by:Guided Practice Check for student understanding by: Some exercise Closing Activity Summarizing the LearningSTUDENT WORKIndependent PracticePOST LESSON ACTIVITIES Student AssessmentProvide feedback to the stude
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 28572-2025大中型水轮机进水阀门规格及技术参数
- 知识普及的考试试题及答案
- 2024年秘书证考试能力建设试题及答案
- 2025中国贸易合同范本
- 2025年福州市房地产买卖合同(甲种本买卖)
- 2025水果种子买卖合同协议书
- 新生儿动脉栓塞的护理
- 甘肃历年国考试题及答案
- 教育强国建设的战略规划与实施路径
- 绿色转型加速:全球与中国清洁能源市场现状及前景分析
- 2025生猪购买合同范文
- 医疗器械经营质量管理制度及工作程序-完整版
- (二模)温州市2025届高三第二次适应性考试英语试卷(含答案)+听力音频+听力原文
- 行政事业单位固定资产培训
- 6.1.2化学反应与电能 课件 2024-2025学年高一下学期化学人教版(2019)必修第二册
- 建筑施工企业安全生产流程
- 申请XXX最低生活保障不予确认同意告知书
- 城市雕塑艺术工程量清单计价定额2020版
- 河池市出租车驾驶员从业资格区域科目考试题库(含答案)
- 淘汰赛赛对阵表
- 医疗纠纷中的病历伪造篡改问题研究
评论
0/150
提交评论