已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JOURNAL OFSOUND ANDVIBRATION/locate/jsviJournalofSoundandVibration263(2003)679699LettertotheEditorVibrationofelevatorcableswithsmallbendingstiffnessW.D.Zhu*,G.Y.XuDepartment of Mechanical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore,MD 21250, USAReceived27September2002;accepted3October20021. IntroductionWhilecablesareemployedindiverseengineeringapplicationsincludingsuspensionbridges1,elevators2,powertransmissionlines3,andmarinetowingandmooringsystems4,theyaresubjecttovibrationduetotheirhighexibilityandlowintrinsicdamping.IrvineandCaughey5and Triantafyllou 6 studied the dynamics of suspended cables with horizontal and inclinedsupports.SergevandIwan7andChengandPerkins8analyzedthevibrationofcableswithattachedmasses.Simpson9,Triantafyllou10,andPerkinsandMote11studiedthein-planeandthree-dimensionalvibrationoftravellingcables.WickertandMote12andZhuandMote13analyzedthedynamicresponseoftravellingcableswithattachedpayloads.Whilethebendingstiffnessofcablesisneglectedinmoststudies,itwasincludedinthemodelsinRefs.14,15toavoidthesingularbehaviorsassociatedwithvanishingcabletension.Bendingstiffnesswasalsoaccountedforwhencablesaresubjectedtoexternalmoments3,16orwhentheirlocalbendingstressesneedtobedetermined17.Vibrationofelevatorcableshasbeenstudiedbyseveralresearchers2,1821.ChiandShu2calculatedthenaturalfrequenciesassociatedwiththelongitudinalvibrationofastationarycableand car system. Roberts 18 used lumped mass approximations to model the longitudinaldynamicsofhoistandcompensationcablesinhigh-riseelevators.Yamamotoetal.19analyzedthefreeandforcedlateralvibrationofastationarystringwithslowly,linearlyvaryinglength.Terumichi et al. 20 examined the lateral vibration of a travelling string with slowly, linearlyvaryinglengthandamass-springtermination.ZhuandNi21analyzedthedynamicstabilityoftravellingmediawithvariablelength.Thevibratoryenergyofthemediawasshowntodecreaseandincreaseingeneralduringextensionandretraction,respectively.Duetoitssmallbendingstiffnessrelativetothetension,themovinghoistcablewasmodelledasatravellingstringinRef.21.Byincludingthebendingstiffnessinthemodelsforthestationaryandmovinghoistcableswithdifferentboundaryconditions,theeffectsofbendingstiffnessandboundaryconditionsontheirdynamiccharacteristicsareinvestigatedhere.Convergenceofthe*Correspondingauthor.Tel.:+1-410-455-3394;fax:+1-410-455-1052.E-mail address: (W.D.Zhu).0022-460X/03/$-seefrontmatterr2002ElsevierScienceLtd.Allrightsreserved.doi:10.1016/S0022-460X(02)01468-2modelsisexamined.Theoptimalstiffnessanddampingcoefcientofthesuspensionofthecaragainstitsguiderailsareidentiedforthemovingcable.2. Stationary cable models2.1. Basic equationsWeconsidersixmodelsofthestationaryhoistcabletoevaluatetheeffectsofbendingstiffnessandboundaryconditionsonitsdynamiccharacteristics.Sincetheverticalcablehasnosag,itismodelledasatautstringandatensionedbeam.ShowninFig.1arethebeamandstringmodelsofthecablewiththesuspensionofthecaragainstitsguiderailsassumedtoberigid.ShowninFig.2arethebeamandstringmodelsofthecablewiththesuspensionofthecaragainsttheguiderailsmodelledbyaresultantstiffness keanddampingcoefcient ce:Inallthecasesthemassofthecarisdenotedbyme:WhilethecarcanhavenitedimensionsinFig.1,itismodelledasapointmassinFig.2.Whenthecableismodelledasatensionedbeam,asshowninFigs.1(a)and(b),and2(a)and(b),itsfreelateralvibrationinthe xy planeisgovernedbyryttx; tC0Pxyxx; tC138x EIyxxxxx; t0; 0oxol; 1wherethesubscriptdenotespartialdifferentiation, yx; t isthelateraldisplacementofthecableparticleatposition x attime t; l isthelengthofthecable,risthemassperunitlength, EI isthebendingstiffness,and Px isthetensionatposition x givenbyPxmerl C0 xC138g; 2inwhichgistheaccelerationduetogravity.Theboundaryconditionsofthecablewithxedends,asshowninFig.1(a),arey0; tyx0; t0; yl; tyxl; t0: 3xlyemyememy(a) (c)(b)Fig.1. Schematicofthestationaryhoistcablewiththesuspensionofthecaragainstitsguiderailsassumedtoberigid:(a)xedxedbeammodel,(b)pinnedpinnedbeammodel,and(c)stringmodel.W.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679699680Theboundaryconditionsofthecablewithpinnedends,asshowninFig.1(b),arey0; tyxx0; t0; yl; tyxxl; t0: 4ForthecablemodelsinFig.2(a)and(b),theboundaryconditionsat x 0arethesameasthoseinEqs.(3)and(4),respectively,andtheboundaryconditionsat x l areyxxl; t0; EIyxxxl; tPlyxl; tmeyttl; tceytl; tkeyl; t: 5Notethatthebendingmomentatx l vanishesintherstequationinEq.(5)becausetherotaryinertiaofthecarisnotconsidered.ThegoverningequationforthemodelsinFigs.1(c)and2(c)isgivenbyEq.(1)with EI 0; andtheboundaryconditionat x 0isy0; t0: Theboundaryconditionat x l forthemodelinFig.1(c)is yl; t0andtheboundaryconditionat x l forthemodelinFig.2(c)isgivenbythesecondequationinEq.(5)with EI 0: DuetovanishingslopeofthecableatthexedendsinFigs.1(a)and2(a),themodelsinFigs.1(c)and2(c)cannotbeobtainedfromthemodelsin Figs.1(a)and2(a),respectively,bysetting EI 0:Inadditiontoprovidinganominaltension meg; themassofthecarresultsinaninertialforceinthesecondequationinEq.(5)forthemodelsinFig.2.Galerkinsmethodandtheassumedmodesmethodareusedtodiscretizethegoverningpartialdifferential equations for the models in Figs.1 and 2, respectively. The solution of Eq.(1) isassumedintheformyx; tXnj1qjtfjx; 6wherefjx arethetrialfunctions, qjt arethegeneralizedcoordinates,and n isthenumberofincludedmodes.ThetrialfunctionsforthemodelsinFig.1satisfyalltheboundaryconditionsandthoseforthemodelsinFig.2satisfyalltheboundaryconditionsexcepttheforceboundaryem/2ek / 2ek/2ec /2ecy/2ek / 2ek/2ec /2ecemylx/2ek / 2ek/2ec /2ecyem(a) (b) (c)Fig.2. Schematicofthestationaryhoistcablewherethecarismodelledasapointmass meanditssuspensionagainsttheguiderailshasaresultantstiffnesskeanddampingcoefcientce:(a)beammodelwithaxedendat x 0;(b)beammodelwithapinnedendat x 0; and(c)stringmodel.W.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679699 681condition in Eq.(5). Substituting Eq.(6) into Eq.(1) and the second equation in Eq.(5),multiplyingthegoverningequationby fix (i 1; 2;y; n),integratingitfrom x 0tol; andusingtheresultingboundaryconditionyieldsthediscretizedequationsforthemodelsinFig.2(a)and(b):M.qtCqtKqt0; 7where q q1; q2;y; qnC138Tis the vector of generalized coordinates and M, K, and C are thesymmetricmass,stiffness,anddampingmatrices,respectively,withentriesMijZl0rfixfjxdx mefilfjl; 8KijZl0Pxf0ixf0jxdx Zl0EIf00ixf00jxdx kefilfjl; 9Cij cefilfjl; 10inwhichtheprimedenotesdifferentiationwithrespectto x: ThediscretizedequationsforthemodelinFig.2(c)aregivenbyEqs.(7)(10)with EI 0inEq.(9).ThediscretizedequationsforthemodelsinFig.1(a)and(b)aregivenbyEqs.(7)(10)withme0inEq.(8)andke ce0inEqs.(9)and(10);thediscretizedequationsforthemodelinFig.1(c)aregivenbyEqs.(7)(10)with me0inEq.(8)and ke EI ce0inEqs.(9)and(10).WhilethediscretizedequationsforthemodelsinFig.1(a)and(b)havethesameform,thetrialfunctionsusedsatisfydifferentboundaryconditions.ThisalsoholdsforthemodelsinFig.2(a)and(b).The eigenfunctions of a xedxed beamand those of a xedxed beamunder uniformtension T meg areusedasthetrialfunctionsforthemodelinFig.1(a).Theeigenfunctionsofapinnedpinned beam, which are identical to those of a pinnedpinned beam under uniformtension,areusedasthetrialfunctionsforthemodelinFig.1(b).Theeigenfunctionsofaxedxedstring,whichareidenticaltothoseofapinnedpinnedbeam,areusedasthetrialfunctionsforthemodelinFig.1(c).Duetothesametrialfunctionsthediscretizedequationsforthemodelin Fig.1(c) can be obtained fromthose for the model in Fig.1(b) by setting EI 0: Theeigenfunctionsofacantileverbeamandthoseofaxedfreebeamunderuniformtension T meg areusedasthetrialfunctionsforthemodelinFig.2(a).Theeigenfunctionsofapinnedfreebeamand those of a pinnedfree beamunder uniformtension T meg are used as the trialfunctionsforthemodelinFig.2(b).TheeigenfunctionsofaxedfreestringareusedasthetrialfunctionsforthemodelinFig.2(c).Notethatapinnedfreebeamhasarigid-bodymodeandaxedfreestringdoesnot.ThediscretizedequationsforthemodelinFig.2(c)cannotbeobtainedasaspecialcasefromthoseforthemodelin Fig.2(b)duetothedifferenttrialfunctionsused.AllthetrialfunctionsarenormalizedandgiveninAppendixA.BytheorthogonalityrelationsthemassmatrixforthemodelsinFig.1isadiagonalmatrix.IftheinitialdisplacementandvelocityofthecableinFigs.1and2aregivenbyyx;0andytx;0;respectively,theinitialconditionsforthegeneralizedcoordinatesareqj0Zl0fjxyx;0dx; qj0Zl0fjxytx;0dx: 11W.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679699682TheenergyofthemodelsinFig.1(a)and(b)isEvt12Zl0ry2t Py2x EIy2xxdx 12andthatofthemodelsinFig.2(a)and(b)isEvt12Zl0ry2t Py2x EIy2xxdx 12mey2tl; t12key2l; t: 13TheenergyofthemodelsinFigs.1(c)and2(c)isgivenbyEqs.(12)and(13),respectively,withEI 0:SubstitutingEq.(6)intoEqs.(12)and(13)yieldsthediscretizedenergyexpressionforthemodelsinFigs.1and2:Evt12qTtMqtqTtKqtC138; 14whereMandKarethecorrespondingmassandstiffnessmatrices.DifferentiatingEqs.(12)and(13)andusingthegoverningequationsandboundaryconditionsyieldsEvt0forthemodelsinFig.1andEvtC0cey2tl; t forthemodelsinFig.2.ThediscretizedexpressionofEvt forthemodelsinFig.2isEvtC0qTtCqt:2.2. Results and discussionTheparametersusedherearesimilartothoseinRefs.21,22:r 1:005kg=m; EI 1:39Nm2;me756kg; g 9:81m=s2; l 171m; and ke2083N=m: Theundampednaturalfrequencies,oi; and modes, xi; of the systemin Eq.(7) are obtained fromthe eigenvalue problem, Kxio2iMxi(i 1;2;y; n).UsingtheaforementionedtrialfunctionsandvariousnumbersoftermsinEq.(6),therstthreenaturalfrequenciesofthemodelsinFigs.1and2arecalculatedasshowninTable 1. The trial functions for the models in Figs.1(a), and 2(a) and (b), corresponding toT meg and T 0; are referred to as the tensioned and untensioned beameigenfunctions,respectively. As the natural frequencies converge fromabove, the use of the tensioned beameigenfunctionssignicantlyacceleratestheconvergenceofthenaturalfrequenciesofthemodelinFig.1(a). The untensioned beam eigenfunctions yield improved estimates of the naturalfrequenciesofthemodelsinFig.2(a)and(b)for n 1: DuetotherotationalconstraintsatthexedendsthenaturalfrequenciesofthemodelsinFigs.1(a)and2(a)areslightlyhigherthanthoseofthemodelsinFigs.1(b)and2(b),respectively.DuetosmallbendingstiffnessthenaturalfrequenciesofthemodelinFig.1(b)areidenticaltothoseofthemodelinFig.1(c)withintheaccuracyshownforall n: ThenaturalfrequenciesofthemodelsinFig.1(b)and(c)convergeatsimilar rates as the natural frequencies of the model in Fig.1(a) using the tensioned beameigenfunctions.ThenaturalfrequenciesofthemodelinFig.2(c)convergeatsimilarratesasthenaturalfrequenciesofthemodelsinFig.2(a)and(b)usingthetensionedbeameigenfunctions.ThenaturalfrequenciesofthemodelsinFig.2approachthoseofthecorrespondingmodelsinFig.1when keapproachesinnity.Consider the undamped (i.e., ce0) responses of the models in Figs.1 and 2 to theinitialdisplacements given in Appendix B and zero initial velocity. The initial displacement for themodelsinFigs.1(a)and2(a)isthestaticdeectionofaxedxedbeamunderuniformtensionmeg; subjectedtoaconcentratedforceat x a resultinginadisplacement d at x a: TheinitialW.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679699 683displacementforthemodelsinFigs.1(b)and2(b)isthestaticdeectionofapinnedpinnedbeamunderthesametension,subjectedtoaconcentratedforceatx aresultinginadisplacementd atx a: TheinitialdisplacementforthemodelsinFigs.1(c)and2(c)isthestaticdeectionofaxedxedstringsubjectedtoaconcentratedforceat x a withadisplacement d at x a: Theabove initial displacements for a 100mand d 0:07mare shown in Fig.3; the resultingdisplacementsandvelocitiesofaparticleofthemodelsinFigs.1and2atx 156mareshowninFigs.4and5,respectively,for0ptptf38s; where tfisthenaltimeofthemovingcableinSection3.2.Notethatthesmallbendingstiffnessleadstotheboundarylayersinthedeectionsofthebeamsinthevicinityofthexedendsandconcentratedforcetoensuresatisfactionoftheboundaryandinternalconditions.DuetosmallbendingstiffnesstheresponsesofthemodelsinTable1Therstthreenaturalfrequencies(inrad/s)ofthemodelsinFigs.1and2calculatedusingdifferentnumbersoftermsinEq.(6),where T isthetensionofthebeamswhoseeigenfunctionsareusedasthetrialfunctionsforthemodelsinFigs.1(a),and2(a)and(b)Numberofmodes n 1 2 3 10 20 30 50 100 150Fig.1(a) T 0 1st 1.859 1.858 1.774 1.710 1.687 1.679 1.673 1.668 1.6662nd 3.598 3.596 3.412 3.372 3.358 3.345 3.336 3.3333rd 5.303 5.128 5.061 5.038 5.019 5.004 5.000T meg 1st 1.666 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.6642nd 3.333 3.328 3.328 3.328 3.328 3.328 3.328 3.3283rd 5.002 4.991 4.991 4.991 4.991 4.991 4.991Fig.1(b) 1st 1.665 1.663 1.663 1.663 1.663 1.663 1.663 1.663 1.6632nd 3.332 3.327 3.327 3.327 3.327 3.327 3.327 3.3273rd 5.000 4.990 4.990 4.990 4.990 4.990 4.990Fig.1(c) 1st 1.665 1.663 1.663 1.663 1.663 1.663 1.663 1.663 1.6632nd 3.332 3.327 3.327 3.327 3.327 3.327 3.327 3.3273rd 5.000 4.990 4.990 4.990 4.990 4.990 4.990Fig.2(a) T 0 1st 1.636 1.533 1.532 1.506 1.501 1.499 1.498 1.497 1.4962nd 1.898 1.887 1.851 1.844 1.842 1.840 1.838 1.8383rd 3.480 3.397 3.374 3.366 3.360 3.355 3.354T meg 1st 1.596 1.559 1.539 1.510 1.503 1.500 1.499 1.497 1.4972nd 1.986 1.917 1.857 1.847 1.844 1.841 1.839 1.8383rd 3.671 3.424 3.387 3.375 3.365 3.358 3.356Fig.2(b) T 0 1st 1.619 1.509 1.498 1.496 1.496 1.496 1.496 1.496 1.4962nd 1.840 1.837 1.837 1.837 1.837 1.837 1.837 1.8373rd 3.398 3.351 3.351 3.351 3.351 3.351 3.351T meg 1st 1.596 1.559 1.539 1.510 1.503 1.500 1.498 1.497 1.4972nd 1.985 1.917 1.857 1.847 1.843 1.841 1.839 1.8383rd 3.670 3.424 3.386 3.374 3.365 3.358 3.355Fig.2(c) 1st 1.596 1.559 1.539 1.510 1.503 1.500 1.498 1.497 1.4972nd 1.985 1.917 1.857 1.847 1.843 1.841 1.839 1.8383rd 3.670 3.424 3.386 3.374 3.365 3.358 3.355W.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679699684Figs.1 and 2 are virtually indistinguishable within the scales of the plots in Figs.4 and 5,respectively.WhilethemaximumdisplacementinFig.5islargerthanthatinFig.4,theenergiesshownbythehorizontallinesinFigs.11(a)and12(a)areessentiallythesame.Convergenceoftheresponsesofthevariousmodelsissimilartothatofthenaturalfrequenciesdiscussedearlier.Undertheaboveinitialconditionsthetransverseforceatthelowerend(i.e., x l)ofeachmodelinFig.1isshowninFig.6(a).Whilethetransverseforceatx l isgivenbytheshearforceC0EIyxxxl; t forthemodelinFig.1(a)because yxx; l0; bythetransversecomponentofthetension Plyxl; tforthemodelinFig.1(c),andbybothtermsC0EIyxxxl; tPlyxl; tforthemodelinFig.1(b),ithasessentiallythesamevalueforthethreemodels.ThebendingmomentatthelowerendofthemodelinFig.1(a)isshowninFig.6(b);thebendingmomentatthetwoendsof the model in Fig.1(b) vanishes identically. The bending moment at an interior point (e.g.,x 156m)ofthemodelsinFig.1(a)and(b)hasanamplitudethatisordersofmagnitudesmaller0.000.020.040.060.080 50 100 150 200x (m)0.069920.069960.0700099.9 100 100.10.E+004.E-068.E-0600.050.010.E+005.E-061.E-05170.99 170.995 171y(x, 0)(m) Fig.3. The initial displacements for the models in: Figs.1(a) and 2(a) (dashed lines); Figs.1(b) and 2(b) (dots);Figs.1(c) and 2(c) (solid lines). The boundary layers are shown in dashed lines in the expanded views near theboundariesanddashedlinesanddotsintheexpandedviewnear x 100m:(a)-0.02-0.010.000.010.02(b)-0.10-0.050.000.050.10010203040t (s)yt(156, t)(m/s) y(156, t)(m) Fig.4. The displacement (a) and velocity (b) of the particle at x 156min the models in Fig.1 under thecorrespondinginitialdisplacementsshowninFig.3:dashedlines,Fig.1(a);dashdottedlines,Fig.1(b);solidlines,Fig.1(c). The energies of the models are shown in Fig.11(a). The tensioned beameigenfunctions are used for theresponseofthemodelinFig.1(a)and n 30inallthecases.W.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679699 685thanthoseatthexedendsofthemodelinFig.1(a).OnlythetensionedbeameigenfunctionscanbeusedtoestimatethebendingmomentandshearforceatthexedendsofthemodelinFig.1(a);theuntensionedbeameigenfunctionswillleadtoslowlyconvergentseriesforthehigherorderderivatives, yxxand yxxx: BoththetensionedanduntensionedbeameigenfunctionscanbeusedtodeterminethetransverseforceataninteriorpointofthemodelinFig.1(a)andanypointofthemodelinFig.1(b)becauseitisdominatedbythetransversecomponentofthetension,which involves the rst order derivative yx: The transverse force and bending moment arerelatedtothetransverseandbendingstresses,respectively,intheanalysisofcumulativefatiguedamage.(a)-0.04-0.0200.020.04(b)-0.1-0.0500.050.10 10203040t (s)y(156, t)(m) yt(156, t)(m/s) Fig.5. The displacement (a) and velocity (b) of the particle at x 156min the models in Fig.2 under thecorresponding initial displacements shownin Fig.3: dashedlines, Fig.2(a); dash-dotted lines, Fig.2(b); solid lines,Fig.2(c).TheenergiesofthemodelsareshowninFig.12(a).TheuntensionedbeameigenfunctionsareusedforthemodelsinFig.2(a)and(b)and n 30inallthecases.(a)-15-10-50510(b)-0.2-010203040t (s)Transverse force (N)EIyxx(l,t)(Nm) Fig.6. (a)ThetransverseforceatthelowerendofeachmodelinFig.1underthecorrespondinginitialdisplacementshowninFig.3:dashedlines,Fig.1(a);dash-dottedlines,Fig.1(b);solidlines,Fig.1(c).(b)ThebendingmomentattheupperendofthemodelinFig.1(a).Thetensionedbeameigenfunctionsareusedforthemodelin Fig.1(a)andn 100inallthecases.W.D. Zhu, G.Y. Xu / Journal of Sound and Vibration 263 (2003) 679699686Undertheaboveinitialconditionsthetransverseforceattheupperend(i.e., x 0)ofeachmodelinFig.2isshowninFig.7(a).SimilartothecaseinFig.6(a),thetransverseforceatx 0;thoughgivenbydifferentexpressions,hasessentiallythesamevalueforthethreemodels.Thebendin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电力计量仪表项目提案报告模板
- 2024年淘宝直播项目申请报告模板
- 玻纤行业周期研究报告
- 玻璃胶行业研究报告
- 泵的选型 课程设计
- 波轮洗衣机课程设计
- 波形发生器设计课程设计
- 毕加索课程设计
- 毕业论文微课程设计
- 比喻句课程设计
- 模拟法庭课件教学课件
- 人教版三年级数学上册期中考试试卷带答案
- 八年级数学家长会课件
- 缤纷舞曲-《青年友谊圆舞曲》教学课件-2024-2025学年人音版(简谱)(2024)七年级音乐上册
- 2024年危重患者护理管理制度范本(五篇)
- 2024-2025学年陕西省西安交大附中高二(上)第一次月考数学试卷(含答案)
- 14孔子论孝教案-蓝色
- 水厂转让合同模板
- 中国记者日介绍主题班会 课件
- 基坑边坡支护安全技术交底
- 质量总监考核表
评论
0/150
提交评论