初二数学经典难题1.doc_第1页
初二数学经典难题1.doc_第2页
初二数学经典难题1.doc_第3页
初二数学经典难题1.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初二数学经典难题参考答案与试题解析1(10分)已知:如图,P是正方形ABCD内点,PAD=PDA=15求证:PBC是正三角形(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。1097743专题:证明题。分析:在正方形内做DGC与ADP全等,根据全等三角形的性质求出PDG为等边,三角形,根据SAS证出DGCPGC,推出DC=PC,推出PB=DC=PC,根据等边三角形的判定求出即可解答:证明:正方形ABCD,AB=CD,BAD=CDA=90,PAD=PDA=15,PA=PD,PAB=PDC=75,在正方形内做DGC与ADP全等,DP=DG,ADP=GDC=DAP=DCG=15,PDG=901515=60,PDG为等边三角形(有一个角等于60度的等腰三角形是等边三角形),DP=DG=PG,DGC=1801515=150,PGC=36015060=150=DGC,在DGC和PGC中,DGCPGC,PC=AD=DC,和DCG=PCG=15,同理PB=AB=DC=PC,PCB=901515=60,PBC是正三角形点评:本题考查了正方形的性质,等边三角形的性质和判定,全等三角形的性质和判定等知识点的应用,关键是正确作出辅助线,又是难点,题型较好,但有一定的难度,对学生提出了较高的要求2(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F求证:DEN=F考点:三角形中位线定理。1097743专题:证明题。分析:连接AC,作GNAD交AC于G,连接MG,根据中位线定理证明MGBC,且GM=BC,根据AD=BC证明GM=GN,可得GNM=GMN,根据平行线性质可得:GMF=F,GNM=DEN从而得出DEN=F解答:证明:连接AC,作GNAD交AC于G,连接MGN是CD的中点,且NGAD,NG=AD,G是AC的中点,又M是AB的中点,MGBC,且MG=BCAD=BC,NG=GM,GNM为等腰三角形,GNM=GMN,GMBF,GMF=F,GNAD,GNM=DEN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论