免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导思切线长定理的教学设计 旅顺实验中学 裴俊杰一,教材说明:这是人教版九年级几何第三册第七章第十节10切线长定理的教学设计。二教材分析: 直线和圆是生活中最常见的几何图形,它的有关性质被广泛应用,尤其对于切线的性质-切线长定理,它体现了园的轴对称性,为我们证明线段相等、角相等、弧相等、垂直关系等提供了一个基本图形和理论依据,为解决与圆有关的数量问题打下了铺垫,具有承上启下的作用。三学生分析: 通过前一段时间的学习,学生对点和圆的位置关系、直线和圆的位置关系以及圆的基本性质有了一个大概的了解,尤其是通过垂径定理、四者关系(圆心角、弧、弦、弦心距)定理、圆周角定理、切线的判定定理、切线的性质定理等定理的学习和应用,学生的各种能力已经得到一定的锻炼。因此,本课定理的证明学生不会感到困难,但定理的应用,尤其是复杂的应用,学生将会感到一定的困难。四设计理念课改的重要任务之一是改变过去“教师教”为“学生学”。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。因此在本课中,我在教学设计时让学生争做数学学习的主人,引导他们积极参与教学活动,体会数学规律,提高解决问题的能力。五教学目标:知识目标:1理解切线长的概念。2掌握切线长定理及其应用。能力目标:培养学生识图能力和逻辑思维能力。情感目标:激发学生学习兴趣,培养探索精神和创新能力。德育目标:渗透事物之间相互转化的思想,培养学生良好的学习习惯和严谨的思维品质。六重点:切线长定理的应用。七难点:切线长定理的灵活应用。八关键:切线长定理的理解。九教学方法:观察、探究、讨论、概括等多种方法。十教学过程:(一) 复习:数学课程标准中指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,通过对旧知的回忆,明确概念,加深理解。出示问题: 直线和圆有几种位置关系,分别是什么? 什么交直线与圆相切? 切线的性质定理内容是什么?(二)引入:数学学习应是教师引导学生通过观察、实践获得知识,形成技能,发展思维,学会学习。一节课若引入得当,有利于激发学生的学习兴趣,获得积极的情感体验。,采取直接设疑式引入,让学生动手作图。出示题目:已知:O外一点P问:过点P向O作切线能做几条? 通过前面的复习,学生很容易作出。(三)新授:1教师首先定义切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段长,叫做这点到圆的切线长(板书)。2结合引例赋予数值出示练习: 已知O的半径为3厘米,点P和圆心O的距离为6厘米,经过点P有O的两条切线,求这两条切线的夹角及切线长。学生独立思考,寻求解决问题的方法。通过此题,不仅加深了学生对切线长概念的理解,而且通过本题继续追问“两条切线长有什么关系?”(相等),再把数值撤掉,问“结论还成立吗?”, 从而引导学生通过观察、猜想、验证,独立思考再小组讨论形式加以证明,得出切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角(板书)。 3出示练习:如图,PA、PB是O的两条切线,A、B是切点。直线OP交O于点D、E,交AB于C。(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形。(3)还可以得出那些结论? 对于这个题目,我引导学生积极思考,大胆思维,与学生一起探究新知识,及时总结、归纳出切线长定理,体现了圆的轴对称性,为我们证明线段相等、角相等、弧相等、垂直关系等提供了一个基本图形和理论依据,从而使学生思想层次飞跃一个新的台阶。4出示例1:已知:如图,P是O外一点,PA、PB 是O的两条切线,A、B是切点,BC是直径。 求证:ACOP 分析:利用切线长定理及等腰三角形的性质即可证明,也可利用学过的其他知识进行证明。帮助学生分析不同证法的优劣,一题多证(板书)。学生独立思考,寻求解决问题的方法,然后教师再引导学生对不同解法进行讨论、评价、探索解决问题的新途径。5出示例2 :圆的外切四边形的两组对边的和相等分析:引导学生分析命题的题设和结论,帮助学生写出已知、求证、画出图形。然后由学生独立思考,分析证明的思路,并完成证明过程,若有困难再讨论。出示变式问题:圆外切平行四边形是_圆外切矩形是_通过变式问题加深对例2的理解与应用。 6出示练习,已知:在ABC中,BC=14cm,AC=9cm,AB=13cm,它的内切圆分别和BC、AC、AB切于点D、E、F,求:AF、BD和CE的长。 分析:此题目的在于加强学生对切线长定理应用、计算,列方程组,然后求解,对学生渗透方程的思想。7总结归纳,拓展提高。 本课小结采取学生总结,教师点拨方法完成。这样不仅使学生在知识上有所提高,也能对所学知识有一个全面认识。8布置作业:1. 书131页3、4题2. 寻找生活中切线长定理应用的实例,并编题、解题。 设计这一环节的目的是巩固、加深课堂所学知识,使学生能理解、掌握和运用切线长定理。十一信息与反馈: 本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年道路旅客运输从业资格证模拟考试题
- 2024年呼和浩特客运资格证都考些什么
- 专题05天气与气候-2024年中考地理专练(原卷版)
- 吉首大学《流体力学与液压传动》2021-2022学年第一学期期末试卷
- 吉首大学《电子商务概论》2021-2022学年第一学期期末试卷
- 《机加工艺方案设计与实施》考试卷A卷及答案
- 吉林艺术学院《影视声音基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《视觉特效制作与合成》2021-2022学年第一学期期末试卷
- 转让个人板车协议书范本模板
- 村民占地调节协议书范文范本
- 江苏省南京市建邺区2024-2025学年九年级上学期期中考试物理试题(无答案)
- 中小学师德师风建设各项制度汇编
- 广东省珠海市子期中学、梅华中学 2024-2025 学年上学期期中考试七年级数学试题(无答案)
- 2024秋期河南开放大学本科《消费者权益保护法》一平台无纸化考试(形考任务1至3+我要考试)试题及答案
- 公务员2024年国考申论真题(地市级)及参考答案
- 人教版数学六年级上册各单元教学计划(1-4单元)
- (新版)食品生产企业食品安全员理论考试题库500题(含答案)
- QCT457-2023救护车技术规范
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
- 新课标背景下的大单元教学研究:国内外大单元教学发展与演进综述
- Unit+5+Understanding+ideas高中英语外研版(2019)选择性必修第一册
评论
0/150
提交评论