2012年高考高中数学基础知识归纳及常用公式和结论.doc_第1页
2012年高考高中数学基础知识归纳及常用公式和结论.doc_第2页
2012年高考高中数学基础知识归纳及常用公式和结论.doc_第3页
2012年高考高中数学基础知识归纳及常用公式和结论.doc_第4页
2012年高考高中数学基础知识归纳及常用公式和结论.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎光临中学数学信息网 2009年安徽高考高中数学基础知识归纳第一部分 集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点? 2 .数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决3.(1) 元素与集合的关系:,.(2)德摩根公式: .(3)注意:讨论的时候不要遗忘了的情况.(4)集合的子集个数共有 个;真子集有1个;非空子集有 1个;非空真子集有2个.4是任何集合的子集,是任何非空集合的真子集.第二部分 函数与导数1映射:注意: 第一个集合中的元素必须有象;一对一或多对一.2函数值域的求法:分析法 ;配方法 ;判别式法 ;利用函数单调性 ;换元法 ;利用均值不等式 ; 利用数形结合或几何意义(斜率、距离、绝对值的意义等);利用函数有界性(、等);平方法; 导数法3复合函数的有关问题:(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式a g(x) b解出 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域.(2)复合函数单调性的判定:首先将原函数分解为基本函数:内函数与外函数分别研究内、外函数在各自定义域内的单调性根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5函数的奇偶性:函数的定义域关于原点对称是函数具有奇偶性的必要条件是奇函数;是偶函数.奇函数在0处有定义,则在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性6函数的单调性:单调性的定义:在区间上是增函数当时有;在区间上是减函数当时有;单调性的判定:定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;导数法(见导数部分);复合函数法;图像法注:证明单调性主要用定义法和导数法。7函数的周期性:(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期: ; ; ;(3)与周期有关的结论:或 的周期为8基本初等函数的图像与性质:.指数函数:;对数函数:;幂函数: ( ;正弦函数:;余弦函数: ;(6)正切函数:;一元二次函数:(a0);其它常用函数: 正比例函数:;反比例函数:;函数.分数指数幂:;(以上,且). .; ; .对数的换底公式:.对数恒等式:.9二次函数:解析式:一般式:;顶点式:,为顶点;零点式: (a0).二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数的图象的对称轴方程是,顶点坐标是。10函数图象: 图象作法 :描点法 (特别注意三角函数的五点作图)图象变换法 导数法图象变换: 平移变换:),左“+”右“”; ) 上“+”下“”; 对称变换:););) ; ); 翻折变换:)(去左翻右)y轴右不动,右向左翻(在左侧图象去掉);)(留上翻下)x轴上不动,下向上翻(|在下面无图象);11函数图象(曲线)对称性的证明:(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然。注:曲线C1:f(x,y)=0关于原点(0,0)的对称曲线C2方程为:f(x,y)=0;曲线C1:f(x,y)=0关于直线x=0的对称曲线C2方程为:f(x, y)=0; 曲线C1:f(x,y)=0关于直线y=0的对称曲线C2方程为:f(x, y)=0;曲线C1:f(x,y)=0关于直线y=x的对称曲线C2方程为:f(y, x)=0f(a+x)=f(bx) (xR)y=f(x)图像关于直线x=对称;特别地:f(a+x)=f(ax) (xR)y=f(x)图像关于直线x=a对称.的图象关于点对称.特别地:的图象关于点对称.函数与函数的图象关于直线对称; 函数与函数的图象关于直线对称。12函数零点的求法:直接法(求的根);图象法;二分法.(4)零点定理:若y=f(x)在a,b上满足f(a)f(b)07圆的方程的求法:待定系数法;几何法。 8点、直线与圆的位置关系:(主要掌握几何法)点与圆的位置关系:(表示点到圆心的距离)点在圆上;点在圆内;点在圆外。直线与圆的位置关系:(表示圆心到直线的距离)相切;相交;相离。圆与圆的位置关系:(表示圆心距,表示两圆半径,且)相离;外切;相交;内切;内含。9直线与圆相交所得弦长第六部分 圆锥曲线1定义:椭圆:;双曲线:; 抛物线:|MF|=d2结论 :直线与圆锥曲线相交的弦长公式:若弦端点为,则,或, 或.注:抛物线:x1+x2+p;通径(最短弦):)椭圆、双曲线:;)抛物线:2p.过两点的椭圆、双曲线标准方程可设为: (同时大于0时表示椭圆;时表示双曲线);当点与椭圆短轴顶点重合时最大; 双曲线中的结论:双曲线(a0,b0)的渐近线:; 共渐进线的双曲线标准方程可设为为参数, 0);双曲线为等轴双曲线渐近线互相垂直;焦点三角形问题求解:利用圆锥曲线定义和余弦定理联立求解。3直线与圆锥曲线问题解法:直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。注意以下问题:联立的关于“”还是关于“”的一元二次方程?直线斜率不存在时考虑了吗?判别式验证了吗?设而不求(点差法-代点作差法):-处理弦中点问题步骤如下:设点A(x1,y1)、B(x2,y2);作差得;解决问题。4求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(又称相关点法或坐标转移法);待定系数法;(5)消参法;(6)交轨法;(7)几何法。第七部分 平面向量1.平面上两点间的距离公式:,其中A,B.2.向量的平行与垂直: 设=,=,且,则:=; ()=0.3.ab=|a|b|cos=xx2+y1y2; 注:|a|cos叫做a在b方向上的投影;|b|cos叫做b在a方向上的投影;ab的几何意义:ab等于|a|与|b|在a方向上的投影|b|cos的乘积。4.cos=;5.三点共线的充要条件:P,A,B三点共线。 第八部分 数列1定义:等比数列 2等差、等比数列性质: 等差数列 等比数列通项公式 前n项和 性质 an=am+ (nm)d, an=amqn-m; m+n=p+q时am+an=ap+aq m+n=p+q时aman=apaq 成AP 成GP 成AP, 成GP,3常见数列通项的求法:an=S1 (n=1)SnSn-1 (n2)定义法(利用AP,GP的定义);累加法(型);公式法: 累乘法(型);待定系数法(型)转化为(6)间接法(例如:);(7)(理科)数学归纳法。4前项和的求法:分组求和法;错位相减法;裂项法。5等差数列前n项和最值的求法:最大值 ;利用二次函数的图象与性质。 第九部分 不等式1均值不等式:注意:一正二定三相等;变形:。2极值定理:已知都是正数,则有:(1)如果积是定值,那么当时和有最小值;(2)如果和是定值,那么当时积有最大值.3.解一元二次不等式:若,则对于解集不是全集或空集时,对应的解集为“大两边,小中间”.如:当,;.4.含有绝对值的不等式:当时,有:; 或.5.分式不等式:(1); (2);(3) ; (4).6.指数不等式与对数不等式 (1)当时,;.(2)当时,;3不等式的性质:;; 第十部分 复数1概念:z=a+biRb=0 (a,bR)z= z2 0;z=a+bi是虚数b 0(a,bR);z=a+bi是纯虚数a=0且b 0(a,bR)z0(z 0)z20时,变量正相关; 0)(1),则的周期T=a;(2),或,或,则的周期T=2a;11.等差数列的通项公式:,或.前n项和公式: .12.设数列是等差数列,是奇数项的和,是偶数项的和,是前n项的和,则前n项的和;当n为偶数时,其中d为公差;当n为奇数时,则, (其中是等差数列的中间一项)13.若等差数列和的前项的和分别为和 ,则.14.数列是等比数列,是其前n项的和,那么()=.15.分期付款(按揭贷款): 每次还款元(贷款元,次还清,每期利率为).16.裂项法:; ; ;.17常见三角不等式:(1)若,则.(2) 若,则.(3) .18.正弦、余弦的诱导公式:;.即:“奇变偶不变,符号看象限”.如,.19.万能公式:;(正切倍角公式).20.半角公式:.21.三角函数变换:相位变换:的图象的图象;周期变换:的图象的图象;振幅变换:的图象的图象.22.在ABC中,有;(注意是在中).23.线段的定比分点公式:设,是线段的分点,是实数,且,则(其中).24.若,则、共线的充要条件是.25.三角形的重心坐标公式: ABC三个顶点的坐标分别为、,则其重心的坐标是.26.点的平移公式 (图形F上的任意一点P(x,y)在平移后的图形上的对应点为,且的坐标为);函数按向量平移后的解析式为.27.“按向量平移”的几个结论(1)点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4) 曲线:按向量a=平移后得到图象,则的方程为.(5) 向量m=按向量a=平移后得到的向量仍然为m=.28. 三角形四“心”向量形式的充要条件:设为所在平面上一点,角所对边长分别为,则:(1)为的外心.(2)为的重心.(3)为的垂心.(4)为的内心.29.常用不等式:(1)(当且仅当ab时取“=”号)(2)(当且仅当ab时取“=”号)(3) (当且仅当时取“=”号)(4) 绝对值不等式: (注意等号成立的条件).(5).(6)柯西不等式:30.最大值最小值定理:如果是闭区间上的连续函数,那么在闭区间上有最大值和最小值.31.在处的导数(或变化率或微商).32.瞬时速度.33.瞬时加速度.34.在的导数.35.函数在点处的导数的几何意义:函数在点处的导数是曲线 在处的切线的斜率,相应的切线方程是36.导数与函数的单调性的关系:(1)与为增函数的关系:能推出为增函数,但反之不一定.如函数在单调递增,但,故是为增函数的充分不必要条件.(2)与为增函数的关系:为增函数,一定可以推出,但反之不一定,因为,即为或.当函数在某个区间内恒有,则为常数,函数不具有单调性.是为增函数的必要不充分条件.37.常见函数的导数:(为常数);,;,.38.可导函数四则运算的求导法则:;,;.39.复合函数的求导法则: 设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.40.复数的相等:.()41.复数的模(或绝对值):=.42.复数的四则运算法则:(1);(2);(3);(4).43.复数的乘法的运算律:对于任何,有:交换律:.结合律:. 分配律: .44.复平面上的两点间的距离公式 :(,).45.向量的垂直: 非零复数,对应的向量分别是,则 的实部为零为纯虚数 (为非零实数).46.对虚数单位,有.47.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数互为共轭复数.如 与互为共轭复数.48.或.49.或所表示的平面区域:设直线,则或所表示的平面区域是:若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.50. 圆的方程的四种形式:(1)圆的标准方程:.(2)圆的一般方程:(0).(3)圆的参数方程:.(4)圆的直径式方程:(圆的直径的端点是、).51.圆中有关重要结论:(1)若P(,)是圆上的点,则过点P(,)的切线方程为.(2)若P(,)是圆上的点,则过点P(,)的切线方程为.(3)若P(,)是圆外一点,由P(,)向圆引两条切线, 切点分别为A、B,则直线AB的方程为.(4)若P(,)是圆外一点, 由P(,)向圆引两条切线, 切点分别为A、B,则直线AB的方程为.52.圆的切线方程:(1)已知圆若已知切点在圆上,则切线只有一条,其方程是 .当圆外时, 表示过两个切点的切点弦方程过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线(2)已知圆,过圆上的点的切线方程为.53.椭圆的参数方程是.54.(1)椭圆的准线方程为,焦半径公式;(2)椭圆的准线方程为,焦半径公式.55. 椭圆的切线方程 :(1)椭圆上一点处的切线方程是.(2)过椭圆外一点所引两条切线的切点弦方程是.(3)椭圆与直线相切的条件是.56.(1)双曲线的准线方程为,焦半径公式;(2)双曲线的准线方程为,焦半径公式.57.(1)双曲线的渐近线方程为;(2)双曲线的渐近线方程为.58. 双曲线的切线方程:(1)双曲线上一点处的切线方程是. (2过双曲线外一点所引两条切线的切点弦方程是. (3)双曲线与直线相切的条件是.59.(1)P是椭圆上一点,F、F是它的两个焦点,FP F=,则P F F的面积=.(2)P是双曲线上一点,F、F是它的两个焦点,FP F=,则P F F的面积=.60.抛物线上的动点可设为P或.61.(1)P(,)是抛物线上的一点,是它的焦点,则;(2)抛物线的焦点弦长,其中是焦点弦与x轴的夹角;(3) 抛物线的通径长为.62. 抛物线的切线方程:(1) 抛物线上一点处的切线方程是.(2)过抛物线外一点所引两条切线的切点弦方程是.(3)抛物线与直线相切的条件是.63.圆锥曲线关于点成中心对称的曲线是.64.圆锥曲线的两类对称问题(1)曲线关于点成中心对称的曲线是.(2)曲线关于直线成轴对称的曲线是:.65.“四线”一方程: 对于一般的二次曲线,用代,用代,用代,用代,用代即得方程,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.66.对空间任一点O和不共线的三点A、B、C,满足,则四点P、A、B、C共面67.空间两个向量的夹角公式:,其中,. 异面直线所成角的求法:68.直线与平面所成角满足:,其中为面的法向量.69.二面角的平面角满足: ,其中、为平面、的法向量. 70.空间两点间的距离公式:若,则.71.点Q到直线的距离:,点P在直线上,直线的方向向量,向量.72.点B到平面的距离:,为平面的法向量,是面的一条斜线,.73.(1)设直线为平面的斜线,其在平面内的射影为,与所成的角为,在平面 内,且与所成的角为,与所成的角为,则. (2)若经过的顶点的直线与的两边、所在的角相等,则在所在平面上的射影为的角平分线;反之也成立.74. 面积射影定理:(平面多边形及其射影的面积分别是、,所在平面成锐二面角).75.分类计数原理:.分步计数原理:.76.排列恒等式:; ; ; .77.常见组合恒等式:; ; . (6).(7). (8)78排列数与组合数的关系是:79单条件排列:以下各条的大前提是从个元素中取个元素的排列.(1)“在位”与“不在位”:某(特)元必在某位有种;某(特)元不在某位有(补集思想) (着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻):定位紧贴:个元在固定位的排列有种.浮动紧贴:个元素的全排列把k个元排在一起的排法有种.此类问题常用捆绑法;插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.(3)两组元素各相同的插空 :个大球个小球排成一列,小球必分开,问有多少种排法?当时,无解;当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.80分配问题:(1)(平均分组有归属问题)将相异的个物件等分给个人,各得件,其分配方法数共有.(2)(平均分组无归属问题)将相异的个物体等分为无记号或无顺序的堆,其分配方法数共有.(非平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,件,且,这个数彼此不相等,则其分配方法数共有.(4)(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,件,且,这个数中分别有a、b、c、个相等,则其分配方法数有 .(5)(非平均分组无归属问题)将相异的个物体分为任意的,件无记号的堆,且,这个数彼此不相等,则其分配方法数有.(6)(非完全平均分组无归属问题)将相异的个物体分为任意的, 件无记号的堆,且,这个数中分别有a、b、c、个相等,则其分配方法数有.(7)(限定分组有归属问题)将相异的()个物体分给甲、乙、丙,等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,时,则无论,等个数是否全相异或不全相异其分配方法数恒有.81二项式定理: ;二项展开式的通项公式:.82等可能性事件的概率:.(一次试验共有n个结果等可能的出现,事件A包含其中m个结果)83互斥事件、有一个发生的概率:;个互斥事件中有一个发生的概率:;、是两个任意事件,则.84相互独立事件、同时发生的概率:;个相互独立事件同时发生的概率:(上接第8页) 第十六部分 理科选修部分1 排列、组合和二项式定理:排列数公式:=n(n-1)(n-2)(n-m1)=(m n, m、nN*),当m=n时为全排列=n(n-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论