核医学成像设备PPT课件.ppt_第1页
核医学成像设备PPT课件.ppt_第2页
核医学成像设备PPT课件.ppt_第3页
核医学成像设备PPT课件.ppt_第4页
核医学成像设备PPT课件.ppt_第5页
已阅读5页,还剩100页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一 核医学成像的特点 核医学成像的特点 以脏器内外或脏器内各部分之间的放射性核素浓度差别为基础 显示静态或动态图像多种动态成像方式放射性核素具有向脏器或病变组织的特异性聚集总之 既可以进行解剖成像 又可以提供有关脏器与病变的功能和分子水平的信息 2020 1 27 1 二 核医学成像的发展简史 1896年 法国物理学家贝克勒尔在研究铀矿时发现 铀矿能使包在黑纸内的感光胶片感光 这是人类第一次认识到放射现象 也是后来人们建立放射自显影的基础 1898年 马丽 居里与她的丈夫皮埃尔 居里共同发现了镭 此后又发现了钚和钍等许多天然放射性元素 2020 1 27 2 1923年 物理化学家Hevesy应用天然的放射性同位素铅 212研究植物不同部分的铅含量 后来又应用磷 32研究磷在活体的代谢途径等 并首先提出了 示踪技术 的概念 1926年 美国波士顿内科医师布卢姆加特 Blumgart 等首先应用放射性氡研究人体动 静脉血管床之间的循环时间 在人体内第一次应用了示踪技术 2020 1 27 3 1951年 美国加州大学的卡森 Cassen 研制出第一台扫描机 通过逐点打印获得器官的放射性分布图像 促进了显像的发展 1957年 安格 HalO Anger 研制出第一台 照相机 称安格照相机 使得核医学的显像由单纯的静态步入动态阶段 并于60年代初应用于临床 2020 1 27 4 1959年 他又研制了双探头的扫描机进行断层扫描 并首先提出了发射式断层的技术 从而为日后发射式计算机断层扫描机 ECT的研制奠定了基础 1972年 库赫博士应用三维显示法和18F 脱氧葡萄糖 18F FDG 测定了脑局部葡萄糖的利用率 打开了18F FDG检查的大门 他的发明成为了正电子发射计算机断层显像 PET 和单光子发射计算机断层显像 SPECT 的基础 人们称库赫博士为 发射断层之父 2020 1 27 5 三 核医学成像的基本过程 一 核医学成像的基本条件 放射性药物 标记化和物 核医学成像设备 2020 1 27 6 二 放射性成像的基本过程1 放射性或标记化合物的制备以放射性示踪法为基础 针对不同的靶器官或靶细胞 不同的部位和不同的检查目的 制备相应的放射性示踪剂 2 将放射性示踪剂引入体内通过注射 口服等方法将示踪剂引入体内 示踪剂在体内根据其化学及生物学的行为特性 经生理生化 生理 病理 排泄等因素积聚浓缩于特定的靶器官和组织 形成体内的随空间和时间而分布不同的图像 2020 1 27 7 3 体外测定 射线靶器官或组织放射性释放穿透组织的 射线 使用灵敏的放射性探测器可以很容易地在人体外表探测到它们分布的所在位置 并定量地测定其大小并转换成电信号 4 数据处理对采集到的基本图像信息送入电子计算机系统中 进行一系列的校正 再经处理或重建成为图像数据 2020 1 27 8 5 图像显示与储存由计算机重建而成的基本图像 再以灰阶 彩色 动态 三维层面 表面三维立体 电影 双减影成像等方式将体层面的辐射分布重现为一个精确的核医学图像 即可以获得反映放射性在脏器和组织中浓度分布及其随时间变化的图像 显示出脏器和组织的形态 位置 大小及其功能结构的变化 2020 1 27 9 第二节 照相机 2020 1 27 10 照相机也称为闪烁照相机 是诊断肿瘤及循环系统疾病的重要设备可进行动态研究检查时间短 适合儿童和危重病患显像迅速 便于多体位 多部位观察对图像处理 获得有助于诊断的数据和参数 2020 1 27 11 一 闪烁 照相机的工作原理 注入人体的放射性核素发射出的伽玛射线首先经过准直器准直 然后打在碘化钠晶体上 碘化钠晶体产生的闪光由一组光电倍增管收集 任何一次闪烁均将在各个光电倍增管上产生不同的响应 响应的强弱与光电倍增管距闪烁点的位置有关 距闪烁点愈近 产生的响应愈强 将所有光电倍增管的响应加起来可以产生位置信号和能量信号 2020 1 27 12 位置信号确定了闪烁事件发生的位置 能量信号确定那些闪烁事件该启辉 那些闪烁事件不该启辉 经过上述处理的信号成为一个计数被记录 形成一幅人体放射性浓度分布图像 即为一幅 相机图像 2020 1 27 13 二 射线的探测技术 一 核辐射探测原理核医学成像必定涉及核辐射探测 核辐射探测一般是指对核辐射线的强度和能量的测量 它一般分为两类 对于带电粒子 是利用它对物质的电离和激发效应来探测的 对不带电的射线 主要是通过探测它与物质作用时产生的次级带电粒子而作间接探测 据此 制成各种辐射探测器 2020 1 27 14 二 射线探测器放射性医学成像中主要通过间接作用来探测 射线的 而且所探测的 射线一般属于低能量范围 由于 射线与原子序数高的物质作用概率大 故 射线探测器的探测介质一般选取Z值尽可能大的材料 如碘化钠 锗半导体 碘 锗等的原子序数均较高 根据 射线探测的记录方法的不同 目前成像用的 射线探测器主要有以下几种 2020 1 27 15 1 晶体闪烁探测器闪烁探测器是目前使用最广泛的探测器 其探测介质是闪烁晶体 射线照射到闪烁晶体发生荧光效应时会产生相应的荧光 它既可探测射线强度 又可测定射线能量 探测效率高 晶体闪烁探测器主要由闪烁晶体 光导 光电倍增管和前置放大器等组成 外面用铅屏蔽 靠近闪烁晶体面向人体的端面还置有铅准直器 2020 1 27 16 1 闪烁晶体 闪烁晶体是能在高能粒子或光子作用下发射短暂荧光的物体 光子进入闪烁晶体与其相互作用产生的次级电子使闪烁晶体的原子或分子电离或激发 它们复合或退激时即发射荧光 故又称为荧光体 2020 1 27 17 射线探测器用的闪烁晶体一般为无机晶体 常用的除碘化钠外 还有锗酸铋 Bi4Ge3O12 BGO 镥 氧 正硅酸盐 LSO 和氟化铯 CsF 等 NaI是无色透明晶体 渗入少量 0 1 0 5 激活物质铊后其发光效率提高近1倍 它广泛用于测量 射线 2020 1 27 18 但其能量分辨率较差 一般在8 12 用137Cs产生的611KeV 射线测试 BGO的有效原子序数高 符合探测效率为NaI的10倍 易于探测高能 射线 CsF的发光衰减时间短 5ns 可用于 飞行时间 测量中 2020 1 27 19 2020 1 27 20 2 多丝正比室多丝正比室是20世纪60年代发展起来的一种新型气体电离探测器 它是一种对位置空间非常灵敏的探测器 空间分辨率一般为0 5 2mm 主要取决于阳极丝间距 也与各极间距有关 分辨时间短 适于高计数率工作 但它只适于探测较低能量的射线 对于25 80KeV的 射线探测效率为10 50 其 相机大多只能拍摄前表器官 如甲状腺 乳腺等 的图像 2020 1 27 21 多丝正比室的结构 如图17 1所示 它主要由3个互相平行的栅极组成 极间距离为3 10mm 这些栅级都是由许多被拉紧的互相平行的金属丝 丝间距为1 3mm 制成的 多丝由此而得 它们被封装在一个充有Xe 93 CH4 7 或Xe CO2混合气体的密封室内 充气压强范围为0 1013kPa 改变充气种类 原子序数 和压强 密度相应改变 可改变射线能量的测量上限 中央栅极亦称为0 阳极 由镀金钨丝 直径12 25 mm 制成 每条丝都连在一起 2020 1 27 22 2个外栅极直径50 m或更粗的金属丝构成 各条丝互不连接 这2个栅极的丝轴互相正交 丝轴与阳极丝平行的栅极称0 阴极 另一个称90 阴极 使用时在阴极与阳极之间加上直流高电压 光子射入多丝正比室内的有效容积 灵敏区 时 与气体作用产生光电效应 生成的光电子大部分通过对气体电离而将能量消耗在生成它的附近的较小区域内 2020 1 27 23 电离产生的次级电子在电场作用下向阳极移动 并在某根丝周围的小区域内中造成约10的5次方倍的雪崩放大 次级电子的连锁电离 形成一个放大的电信号脉冲 其大小与光电子的能量成正比 同时 雪崩产生的正离子移动至阴极丝上产生相反极性的电脉冲 室内电离事件的位置信息是通过相互正交的阴极丝及连接的电磁延迟线获取的 2020 1 27 24 2020 1 27 25 3 半导体探测器半导体探测器具有能量分辨率高 线性响应好 脉冲上升时间短 工作电压低 结构简单 体积小等优点 其缺点是 一般需要用电荷灵敏前置放大器 以消除结电容的影响 半导体探测器实际上是一种PN的结式的电离室 2020 1 27 26 2020 1 27 27 使用时 在电极K与A之间 某种形式的PN结之间 加上反向偏电压 在半导体介质内形成电场 无光子入射时反向绝缘电阻很大 漏电流极小 无输出信号 当有光子入射时 由于光子的电离作用而产生大量的电子 空穴对 在外电场作用下 它们分别向两电极作漂移运动 在收集极 2020 1 27 28 A上形成电流 通过负载电阻RL产生电压脉冲信号 在半导体探测器中产生一对电子 空穴的平均电离能比气体探测器要小一个数量级 约3ev 对于一定能量的射线粒子可产生较多的导电粒子 故她的灵敏度和能量分辨力较高 半导体探测器种类很多 主要有锂漂移探测器 高纯度锗探测器 碲化镉半导体探测器三种 2020 1 27 29 三 照相机的基本结构 闪烁 照相机主要由四部分组成 即闪耀探头 电子线路 显示记录装置以及一些辅助装置 闪烁探头包括准直器 闪烁晶体 光电倍增管 电子线路包括位置计算电路 能量信号电路 前置放大器 主放大器和分析器均匀性校正器线路等 显示装置包括示波器 照相机等 还有其转移架和操作控制台等 操纵台上装有能量选择器 显示选择器 控制器 定时器 定标器 摄影显示器 现代 相机都装备有计算机图像数据处理系统 2020 1 27 30 2020 1 27 31 四 照相机的探头 照相机的探头结构 由外壳 接装环 准直器 闪烁晶体 光导 光电倍增管陈列及前置电路组成 2020 1 27 32 2020 1 27 33 一 准直器1 准直器的作用准直器位于探头的最前端它是由铅或铅钨合金铸成的机械装置 它的作用是把人体内四面八方分散的伽玛射线定向准直到闪烁晶体的一定部位上 这种采用准直器的方法称作机械准直 以确别于电子准直 2020 1 27 34 2 准直器的结构准直器是在有一定厚度的重金属屏板上制作出不同形状和数目的小孔而成的 在实际应用中大多采用铅 有时为增强其屏蔽能力 在关键部分用钨合金铸成 2020 1 27 35 3 准直器的类型孔的形状 针孔型 平行孔型 发散型 会聚型及斜孔型 能量范围 低能 350Kev 灵敏度和空间分辨 高灵敏 高分辨及通用型 2020 1 27 36 2020 1 27 37 4 各种准直器的特点 1 平行孔型准直器空间分辨力随距离增加而变差灵敏度随距离增加变化不太图像大小与靶器官和准直器之间的距离无关分为低能通用型 低能高分辨率 低能高灵敏度 2020 1 27 38 2 张角型准直器扩大了有效视野10 20 灵敏度和分辨率较平行孔差 随放射源与准直器距离的增加而变坏易产生图像畸变 2020 1 27 39 3 聚集型准直器提高灵敏度和分辨率易出现图像畸变适用于总计数时间受限的动态研究 2020 1 27 40 4 针孔型准直器与小孔成像原理一样 像与实物的方向相反成像大小与距离成反比 距离越近 成像越大 2020 1 27 41 2020 1 27 42 2020 1 27 43 二 闪烁晶体紧靠准直器 将 射线转化为荧光晶体为碘化钠晶体 NaI T1 晶体在探头中起波长转换器的作用普通放射性核素产生的伽玛射线为高能量 短波长的光子 它不能直接被晶体后面的光电倍增管 PMT 接受 必须把它转换成波长与可见光一样的光子才能被PMT接受 10 19nm 400nm左右 2020 1 27 44 晶体的形状可以是方形 矩形和圆形 圆形用得最多 晶体的主要规格是它的大小和厚度 矩形和方形晶体则以边长表示 目前大面积的晶体面积可达600 400mm2 晶体厚度用毫米表示 传统用英寸 2020 1 27 45 三 光导位于闪烁晶体和光电倍增管阵列之间的薄层邮寄玻璃片或光学玻璃片把光电倍增管通过光耦合计与闪烁晶体耦合把闪烁晶体受 射线照射后产生的闪烁光有效地传送至光电倍增管得光电阴极上 2020 1 27 46 四 光电倍增管呈蜂窝状排列成阵列状圆形探测器PMT数量为37 91个 方形或矩形探测器PMT一般为55 96个 PMT有圆形和六角形 六角形优点 去除光导 直接与晶体紧密相贴 消除探测间隙 提高灵敏度和空间分辨力 2020 1 27 47 2020 1 27 48 五 照相机电路 照相机电路 位置信号通道和能量信号通道能量信号通道 脉冲总和电路 脉冲高度分析器 自动曝光电路 生理标记电路等 2020 1 27 49 一 位置计算电路由定位电路和位置信号通道完成定位电路作用 将光电倍增输出的电脉冲信号转换成为确定晶体闪烁点位置的X Y信号和确定入射 射线强度的信号两种类型一加权电阻矩阵网络型 Anger型 延迟线时间转换型 2020 1 27 50 二 能量信号电路通过前置放大器和主线性放大器把电信号整形和放大1 前置放大器 对探测器信号进行预放大2 主线性放大器 将前置放大器输出的电脉冲信号成比例地进行放大并滤波整形 2020 1 27 51 3 脉冲幅度分析器有选择性地记录从晶体和光电倍增管输送来的电脉冲信号 排除本底及其他干扰信号 单道脉冲高度分析器 选择具有一定能量范围的射线进行测量 测定射线能量分布 能谱 多道脉冲高度分析器 测定能谱方面 效率和精度比单道要高 2020 1 27 52 2020 1 27 53 4 均匀性校正电路要使空间分辨力好 像素数目就要多 而在一定的闪烁计数数目下 每一个像素的光子计数数目就会小 统计涨落会对像素造成不良影响 一幅质量较好的图像 每个像素显示必须要在40 50以上个计数 现代 照相机都有均匀性校正线路 它由微处理器来完成 2020 1 27 54 5 脉冲计数器其功能是测定某一段时间内由探头输出的脉冲信号的绝对数目 以获取射线强度或能量的具体数据 将这段时间的脉冲信号计数除以这段时间便得计数率 2020 1 27 55 三 信号数字处理现代数字式 相机 由于大规模集成电路的模数变换器 微处理器 高密度数字存储器的使用 实现了 相机的完善的数据处理 它包括 相机的数据采集 图像处理 图像显示 感兴趣区显示 局部动态曲线的制作与分析和数据检查等 2020 1 27 56 四 图像显示处理当我们一次次地记录了闪烁点的位置后 就可以构成一幅呈矩阵形式排列的数字化图像 核医学的图像一般采用32 32 64 64 128 128或256 256像素点的矩阵图像 矩阵的像素点愈密集 图像的空间分辨率愈高 但是 由于给病人使用的放射性药物的剂量不能很大 数据采集的时间也不能时间太长 2020 1 27 57 所以每幅图像能包含的 射线光子计数是有限的 如果采用像素点较多的矩阵 每个像素的 射线光子计数就很少 于是统计涨落的影响就比较明显 或者说图像的信号比较差 相机的图像一般在监视器的荧光屏上显示 记录图像的方法大多以胶片为主 2020 1 27 58 六 多丝正比室 照相机 探测器采用多丝正比室的 照相机称为多丝正比室 相机 这种 相机的位置坐标由电磁延迟线经电容耦合至每个丝极的正交平面来确定 它的分辨时间短 有利于动态检查 对于25 80keV的 射线的探测效率为10 50 可获得毫米级分辨率的图像 恢复时间长是缺点 近年来国外已研制成功比一般 相机成本低一个数量级的多丝正比室 相机 多丝正比丝 相机具有很大的应用潜力和广阔的发展前景 2020 1 27 59 第三节单光子发射型计算机体层设备 SPECT 2020 1 27 60 2020 1 27 61 一 SPECT的成像原理及类型 一 成像原理是一台高性能的 照相机的基础上增加了支架旋转的机械部分 断层床和图像重建 reconstruction 软件 使探头能围绕躯体旋转360o或180o 从多角度 多方位采集一系列平面投影像 通过图像重建和处理 可获得横断面 transversesection 冠状面 coronalsection 和矢状面 sagittalsection 及其它斜断面的断层影像 2020 1 27 62 2020 1 27 63 二 类型1 扫描机型SPECT检查时探头须知平动和旋转两种运动 探测器沿病人某一截面在不同方向上作直线扫描 将每一条线上的体内示踪剂放出的射线总和记录下来 形成一个投影 这些直线投影的集会形成一个投影截面 每做完一次直线扫描 探测器旋转一定角度 2020 1 27 64 再扫描一次 取得另一个投影截面 如此反复 直到整个扫描结束 由计算机对取样数据进行处理并重建为体层像 这类SPECT体层速度快 适用于快速动态研究 但因价格较高 不能同时兼用于平面显像和全身显像 故在实际应用中扫描型SPECT仅占5 趋于淘汰 2020 1 27 65 2 相机型SPECT 相机型的SPECT是由高性能 大视野 多功能的 照相机和支架旋转装置 图像重建软件等组成 可进行多角度 多方位的采集数据 图像采集完毕存入硬盘以备图像重建 相机型SPECT有两种具体实施方法 2020 1 27 66 1 固定型 固定型是采用结构固定式探测器 它由互成90度的4台 相机组成 用多针孔准直器或旋转斜孔准直器采集不同角度的投影而进行图像重建 90度内的扫描通过旋转病订来实现 2020 1 27 67 2 旋转型 旋转型是目前常用的方法 是用1台或2台闪烁 相机 将整个探测器装在可旋转360度的框架上 2020 1 27 68 2020 1 27 69 应用大视野闪烁晶体 多个光电管的 相机探头围绕身体旋转360度或180度进行完全角度或有限角度取样 可以重建各种切面的符合临床要求的体层像 旋转 相机型SPECT既可获取平面投影像 又可获取人体横断层面像和全身显像 一次旋转即得到多个层面的重建数据 灵敏度高 速度快 近几年为了提高灵敏度和空间分辨力 加快采集速度 已有双探头和三探头的旋转 相机型问世 2020 1 27 70 二 SPECT的基本组成 由探测器 机架 床 控制台 计算机和外周装置组成 2020 1 27 71 1 探测器SPECT探测器与照相机探测器相同 2020 1 27 72 2 机架机械运动组件机架运动控制电路电源保障系统机架操纵器运动状态显示器 2020 1 27 73 3 计算机及外围装置计算机 微型机 小型机 单功能多处理器等外围装置 磁带机 可读写光盘 高精度的黑白或彩色显示器 生理信号检测输出设备 2020 1 27 74 三 SPECT的性能特点 1 体层图像2 衰减校正3 空间分辨率较低4 灵敏度比较低5 价格便宜 2020 1 27 75 第四节正电子发射型计算机体层设备 PET 2020 1 27 76 一 正电子放射性核素 正电子又称 粒子 是放射性核素在衰变过程中发射出来的带正电荷的电子 其质量与带负电荷的电子相同 发射正电子的放射性核素几乎都是人工生产的放射性核素 自然界中的天然放射性核素一般不会发射正电子 正电子在物质中经过极短距离的运行后 与临近的负电子结合而消失 从而转化成一对方向相反 能量各为0 511MeV的y光子 通常将这一过程称为湮没辐射 这也是当今进行PET成像的基础 2020 1 27 77 目前医用正电子核素主要是由回旋加速器生产 用加速的质子或zH轰击相应的稳定性原子而获得 如应用稳定的元素 18O可以制备目前常用的正电子放射性核素18F 其物理半衰期为109min 应用18F标记的脱氧葡萄糖 18F FDG 又是用PET诊断肿瘤最常用的显像药物或显像剂 2020 1 27 78 除了18F外 回旋加速器生产的PET显像用正电子核素还有13N 11C和150等 这些核素的物理半衰期都非常矩 其中150仅122s 13N为lOmin 11C为20 3min 由于这些核素的半衰期太短 不便于长途运输 故一般都在医院内生产 其他目前应用比较少的正电子核素还有62Cu 64CL1 68Ga 124I等 有些可通过发生器生产制备 2020 1 27 79 二 PET探测原理 PET的基本原理是利用加速器生产的超短半衰期同位素 如氟 18 氮 13 氧 15 碳 17等作为示踪剂注入人体 参与体内的生理生化代谢过程 这些超短半衰期同位素是组成人体的主要元素 2020 1 27 80 利用它们发射的正电子与体内的负电子结合释放出一对伽玛光子 被探头的晶体所探测 得到高分辨率 高清晰度的活体断层图像 以显示人脑 心脏 全身其它器官以及肿瘤组织的生理和病理的功能及代谢情况 2020 1 27 81 2020 1 27 82 1 符合电路仅有电子准直还不能确定闪烁事件的空间位置 少林湮没辐射的两个 光子是空间某点上同时产生的闪烁事件 必须把它们同时测定下来才能确定事件发生的空间位置 探测同时发生的信号采用符合探测技术 符合线路与单道分析器中应用的符合线路相反 前者是两个闪烁事件同时进入则被探测 不同时进入的闪烁事件则被剔出 后者则刚好把同时进入的闪烁事件剔出于门外 2020 1 27 83 2 随机符合除真实符合外 短于分辨时间进入符合线路的两个无关 光子也会被探测下来 实际上这两个光子并不是发生湮灭事件时产生的两个相关光子 而是由于某种其他原因同时到达检测器的两个不相关的光子 这种符合称为随机符合 2020 1 27 84 发生随机符合可能有以下几种情况 一是散射后发生的符合事件 占全部真实符合事件的8 30 二是所谓的偶然符合事件 约占真实事件的15 随机符合的存在是PET中一个十分严重的问题 它造成了伪像损害图像质量 减少随机符合最简单的方法是采用低计数率 也有采用减法电路 把随机符合从总计数中剔出 2020 1 27 85 3 衰减校正为了准确地确定放射性核素在人体内的密度分布 PET系统也需要进行衰减校正 其原理和SPECT类似 但比SPECT系统的校正更精确 2020 1 27 86 4 飞行时间技术在成对探测器视野内的一对 光子到达两个探测器的时间可能有差别或无差别 根据 t和光速可计算出发生湮没辐射的确切位置 这一技术应用于提高空间分辨力 称为飞行时间技术 2020 1 27 87 三 PET的基本结构 PET扫描系统主要由扫描仪 显像床 电子柜 操作与分析工作站和影像硬拷贝工作站等组成 1 PET扫描仪PET扫描仪的外形类似CT 为一个柱状的支架 扫描视野位于支架的中央 为一个环状 筒形的空洞 扫描仪由探测器 射线屏蔽装置 棒源 符合事件探测及符合事件处理系统等组成 2020 1 27 88 2 电子柜电子柜主要由阵列处理器组成 用于贮存符合事件处理系统传来的光子信号 并在工作站指令指导下通过重建将其转化为图像 3 操作与分析工作站操作与分析工作站通过人机对话控制扫描仪 显像床及电子橱进行图像采集 重建处理等 并对重建后图像重新切层和进行图像显示 图像分析和定量计算等 2020 1 27 89 四 PET成像特点与应用 一 优点PET是目前惟一可在活体上显示生物分子代谢 受体及神经介质活动的新型影像技术 现已广泛用于多种疾病的诊断与鉴别诊断 病情判断 疗效评价 脏器功能研究和新药开发等方面 2020 1 27 90 1 灵敏度高 PET是一种反映分子代谢的显像 当疾病早期处于分子水平变化阶段 病变区的形态结构尚未呈现异常 MRI CT检查还不能明确诊断时 PET检查即可发现病灶所在 并可获得三维影像 还能进行定量分析 达到早期诊断 这是目前其它影像检查所无法比拟的 2020 1 27 91

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论