全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省化州市实验中学2014高中数学 3.4 基本不等式导学案 新人教a版必修5【教学目标】1、利用基本不等式求最值2、利用基本不等式证明不等式【知识要点】1基本不等式(1)重要不等式:对于任意实数,都有,当且仅当_时,等号成立(2)均值不等式形式:_;成立的前提条件:_;等号成立的条件:当且仅当_时取等号;对任意两个正实数a、b,叫做a,b的_, 叫做a,b的_2应用基本不等式求最值如果都是正数,那么(1)若积是定值,那么当_时,和有最_值(2)若和是定值s,那么当_时,积有最_值例1、(1)用篱笆围一个面积为100的矩形菜园,问这个矩形的长、宽各是多少时,所用的篱笆最短,最短的篱笆是多少?(2)一段长为36m的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大的面积是多少? 例2、(1)若x0,求函数yx的最小值,并求此时x的值;(2)设0x,求函数y4x(32x)的最大值;(3)已知x2,求x的最小值;(4)已知x0,y0,且1,求xy的最小值【小结】在利用基本不等式求最值时要注意三点:一是各项为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理发现拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件即为“一正二定三相等”【变式训练1】(1) (2)(3)已知0x,求函数yx(13x)的最大值;【变式训练3】(2011高考北京卷)某车间分批生产某种产品,每批的生产准备费用为800元若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()a60件b80件c100件 d120件【课后训练】 a.0 b.1 c.2 d.34. 若正实数x,y满足2xy6xy,则xy的最小值是_6 . (本题满分12分)某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元从第二年起,包括维修费在内每年所需费用比上一年增加4万元该船每年捕捞总收入50万元(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《食品机械与设备》2023-2024学年第一学期期末试卷
- 石河子大学《教育影视赏析》2021-2022学年第一学期期末试卷
- 石河子大学《家畜育种学》2023-2024学年第一学期期末试卷
- 石河子大学《饭店管理》2023-2024学年第一学期期末试卷
- 沈阳理工大学《商业品牌整体策划》2023-2024学年第一学期期末试卷
- 沈阳理工大学《建筑设计》2022-2023学年第一学期期末试卷
- 2018年四川内江中考满分作文《我心中的英雄》8
- 沈阳理工大学《化工安全与环保》2022-2023学年第一学期期末试卷
- 沈阳理工大学《电力变压器设计》2023-2024学年期末试卷
- 沈阳理工大学《产品仿生学应用设计》2021-2022学年第一学期期末试卷
- 邮储高级练习卷三(第12章-第17章)附有答案
- 重庆市江北区2023-2024学年六年级下学期期末考试数学试题
- 军队文职聘用合同管理规定
- 2024年贵州省安顺市西秀区小升初语文试卷
- 2024-2029年中国儿童牙冠行业市场现状分析及竞争格局与投资发展研究报告
- 新时代铁路发展面对面全文内容
- 人工智能与语文阅读理解教学
- 科学素养培育及提升-知到答案、智慧树答案
- 快递主管岗位职责
- 医疗差错、纠纷、事故登记表
- 七年级第一次期中家长会课件
评论
0/150
提交评论