




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2 偏 导 数,一、偏导数的定义及其计算法,二、高阶偏导数,上页,下页,铃,结束,返回,首页,一、偏导数的定义及其计算法,类似地, 可定义函数zf(x, y)在点(x0, y0)处对y的偏导数.,偏导数的定义,下页,设函数zf(x y)在点(x0 y0)的某一邻域内有定义 若极限,存在 则称此极限为函数zf(x y)在点(x0 y0)处对x的偏导数 记作,下页,一、偏导数的定义及其计算法,偏导数的定义,偏导数的符号,如果函数zf(x, y)在区域D内每一点(x, y)处对x的偏导数都存在, 那么f(x, y)对x的偏导数是x、y的函数, 这个函数称为函数zf(x, y)对x的偏导函数(简称偏导数), 记作,偏导函数,下页,一、偏导数的定义及其计算法,偏导数的定义,偏导数的符号,偏导函数,偏导函数的符号,下页,偏导函数,偏导数的概念还可推广到二元以上的函数 例如 三元函数uf(x y z)在点(x y z)处对x的偏导数定义为,其中(x y z)是函数uf(x y z)的定义域的内点,偏导数的求法 求函数对一个自变量的偏导数时, 只要把其它自变量看作常数, 然后按一元函数求导法求导即可.,下页,偏导函数,讨论 下列求偏导数的方法是否正确?,例1 求zx23xyy2在点(1, 2)处的偏导数.,解,例2 求zx2sin2y的偏导数.,解,下页,解,证,下页,例3,例4,证,本例说明一个问题: 偏导数的记号是一个整体记号,不能看作分子分母之商.,下页,例5 已知理想气体的状态方程为pV=RT(R为常数), 求证,下页,偏导数的几何意义,fx(x0, y0)= f(x, y0)x,fy(x0, y0)= f(x0, y)y,z=f(x, y0),z=f(x0, y),是截线z=f(x, y0)在点(x0, y0)处的切线Tx对x轴的斜率.,是截线z=f(x0, y)在点(x0, y0)处的切线Ty对y轴的斜率.,偏导数的几何意义,fx(x0, y0)= f(x, y0)x,fy(x0, y0)= f(x0, y)y,是截线z=f(x, y0)在点(x0, y0)处的切线Tx对x轴的斜率.,是截线z=f(x0, y)在点(x0, y0)处的切线Ty对y轴的斜率.,下页,偏导数与连续性 对于多元函数来说, 即使各偏导数在某点都存在, 也不能保证函数在该点连续. 例如,首页,但函数在点(0, 0)并不连续.,在点(0, 0), 有fx(0, 0)0, fy(0, 0)0,提示:,提示:,当点P(x y)沿直线ykx趋于点(0 0)时 有,因此 函数f(x y)在(0 0)的极限不存在 当然也不连续,二、高阶偏导数,二阶偏导数,如果函数zf(x, y)的偏导数fx(x, y)、fy(x, y)也具有偏导数, 则它们的偏导数称为函数zf(x, y)的二阶偏导数. 函数zf(x, y)的二阶偏导数有四个:,其中fxy(x, y)、fyx(x, y)称为混合偏导数.,类似地可定义三阶、四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目管理第4章教学
- 荆门污水顶管施工方案
- 糖尿病肾病护理教学查房
- 数码相机的基础知识
- 中山职业技术学院《幼儿园活动设计与指导艺术》2023-2024学年第一学期期末试卷
- 濮阳医学高等专科学校《普通话语音》2023-2024学年第二学期期末试卷
- 天府新区航空旅游职业学院《中学综合实践》2023-2024学年第二学期期末试卷
- 岳阳职业技术学院《营销工程》2023-2024学年第二学期期末试卷
- 玻璃门衣柜施工方案
- 重庆经贸职业学院《大学物理B》2023-2024学年第二学期期末试卷
- JT-T-795-2011事故汽车修复技术规范
- 四川省泸州市龙马潭区2022-2023学年六年级下学期期末考试语文试卷
- 睡眠中心管理系统技术要求
- 土地托管项目实施方案
- 金属非金属矿山重大事故隐患排查表
- 4.22世界地球日绿水青山就是金山银山爱护地球环境讲好地球故事宣传课件
- 飞机知识科普儿童课件
- 信息化运维服务服务质量保障方案
- 外科学教学课件:颈、腰椎退行性疾病
- 2024年03月湖南省韶山思政教育实践中心2024年招考5名合同聘用制教师笔试近6年高频考题难、易错点荟萃答案带详解附后
- 2023年鲁迅美术学院附属中学(鲁美附中)中考招生语文数学英语试卷
评论
0/150
提交评论