瑞昌市高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
瑞昌市高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
瑞昌市高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
瑞昌市高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
瑞昌市高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

瑞昌市高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )A(0,+)B(0,2)C(1,+)D(0,1)2 将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,则的解析式为( )A BC D【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.3 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D134 下列命题正确的是( )A很小的实数可以构成集合.B集合与集合是同一个集合.C自然数集 中最小的数是.D空集是任何集合的子集.5 已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如表所示:降水量XX100100X200200X300X300工期延误天数Y051530概率P0.40.20.10.3在降水量X至少是100的条件下,工期延误不超过15天的概率为( )A0.1B0.3C0.42D0.56 下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)7 若函数f(x)是奇函数,且在(0,+)上是增函数,又f(3)=0,则(x2)f(x)0的解集是( )A(3,0)(2,3)B(,3)(0,3)C(,3)(3,+)D(3,0)(2,+)8 满足集合M1,2,3,4,且M1,2,4=1,4的集合M的个数为( )A1B2C3D49 用秦九韶算法求多项式f(x)=x65x5+6x4+x2+0.3x+2,当x=2时,v1的值为( )A1B7C7D510曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x511已知抛物线:的焦点为,是抛物线的准线上的一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为( )A B C D12设集合,则( )A. B. C. D. 【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题二、填空题13已知的面积为,三内角,的对边分别为,若,则取最大值时 14直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于_。15已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 16已知直线l:axby1=0(a0,b0)过点(1,1),则ab的最大值是17曲线y=x2和直线x=0,x=1,y= 所围成的图形的面积为18若“xa”是“x22x30”的充分不必要条件,则a的取值范围为三、解答题19计算:(1)8+()0;(2)lg25+lg2log29log3220若an的前n项和为Sn,点(n,Sn)均在函数y=的图象上(1)求数列an的通项公式;(2)设,Tn是数列bn的前n项和,求:使得对所有nN*都成立的最大正整数m21(本小题满分12分)已知分别是椭圆:的两个焦点,且,点在该椭圆上(1)求椭圆的方程;(2)设直线与以原点为圆心,为半径的圆上相切于第一象限,切点为,且直线与椭圆交于两点,问是否为定值?如果是,求出定值,如不是,说明理由22设函数f(x)=ax2+bx+c(a0)为奇函数,其图象在点(1,f(1)处的切线与直线x6y7=0垂直,导函数f(x)的最小值为12(1)求a,b,c的值;(2)求函数f(x)的单调递增区间,并求函数f(x)在1,3上的最大值和最小值23某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线=bx+a,其中b=,a=b24某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?瑞昌市高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:方程x2+ky2=2,即表示焦点在y轴上的椭圆故0k1故选D【点评】本题主要考查了椭圆的定义,属基础题2 【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图象,再将的图象向上平移3个单位得到函数的图象,因此 .3 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题4 【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.5 【答案】D【解析】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)=0.5,故答案选:D6 【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D7 【答案】A【解析】解:f(x)是R上的奇函数,且在(0,+)内是增函数,在(,0)内f(x)也是增函数,又f(3)=0,f(3)=0当x(,3)(0,3)时,f(x)0;当x(3,0)(3,+)时,f(x)0;(x2)f(x)0的解集是(3,0)(2,3)故选:A8 【答案】B【解析】解:M1,2,4=1,4,1,4是M中的元素,2不是M中的元素M1,2,3,4,M=1,4或M=1,3,4故选:B9 【答案】C【解析】解:f(x)=x65x5+6x4+x2+0.3x+2=(x5)x+6)x+0)x+2)x+0.3)x+2,v0=a6=1,v1=v0x+a5=1(2)5=7,故选C10【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易11【答案】B【解析】 考点:抛物线的定义及性质【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程(2)注意应用抛物线定义中的距离相等的转化来解决问题(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点12【答案】D【解析】由绝对值的定义及,得,则,所以,故选D.二、填空题13【答案】【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.14【答案】【解析】设l1与l2的夹角为2,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA=,圆的半径为r=,sin=,cos=,tan=,tan2=,故答案为:。15【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题16【答案】 【解析】解:直线l:axby1=0(a0,b0)过点(1,1),a+b1=0,即a+b=1,ab=当且仅当a=b=时取等号,故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题17【答案】 【解析】解:曲线y=x2和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)曲线y=x2和直线x=0,x=1,y= 所围成的图形的面积为S=()dx+dx=(xx3)+(x3x)=故答案为:18【答案】a1 【解析】解:由x22x30得x3或x1,若“xa”是“x22x30”的充分不必要条件,则a1,故答案为:a1【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键三、解答题19【答案】 【解析】解:(1)8+()0=21+1(3e)=e(2)lg25+lg2log29log32=12=1(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用20【答案】 【解析】解:(1)由题意知:Sn=n2n,当n2时,an=SnSn1=3n2,当n=1时,a1=1,适合上式,则an=3n2;(2)根据题意得:bn=,Tn=b1+b2+bn=1+=1,Tn在nN*上是增函数,(Tn)min=T1=,要使Tn对所有nN*都成立,只需,即m15,则最大的正整数m为1421【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用22【答案】 【解析】解:(1)f(x)为奇函数,f(x)=f(x),即ax3bx+c=ax3bxc,c=0f(x)=3ax2+b的最小值为12,b=12又直线x6y7=0的斜率为,则f(1)=3a+b=6,得a=2,a=2,b=12,c=0;(2)由(1)知f(x)=2x312x,f(x)=6x212=6(x+)(x),列表如下: x (,) (,) (,+) f(x)+ 0 0+ f(x) 增 极大 减 极小 增所以函数f(x)的单调增区间是(,)和(,+)f(1)=10,f()=8,f(3)=18,f(x)在1,3上的最大值是f(3)=18,最小值是f()=823【答案】 【解析】解:(1)作出散点图如下:(3分)(2)=(2+3+4+5)=3.5, =(2.5+3+4+4.5)=3.5,(5分)=54, xiyi=52.5b=0.7,a=3.50.73.5=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论