




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时 第 1 课时单元 八 课题 数与形课型 新授教 学内 容 第 107 页例 1 及相关内容教 学 目 标1.使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。2使学生会利用图形来解决一些有关数的问题。3使学生在解决数学问题的过程中,体会和掌握数形结合、归纳推理等的数学思想。重点难点 发现图形中隐藏着的数的规律,会利用图形来解决一些有关数的问题。教学准备 多媒体教室、教学课件教 学 程 序 和 内 容课前引入:师:今天,我非常荣幸能和第一实验小学六年级一班的同学们一起学习,在正式上课之前我想先做一个小小的采访。师:同学们,你们课下参加过比赛吗?都参加过什么比赛?同学们的生活真是丰富多彩,参加了那么多的比赛,老师真是羡慕你们。今天,要不我们在课前也举行一场比赛,怎么样?生:好。师:比赛什么呢,这节上数学课,我们举行一场数学计算比赛吧,好吗?师:大家请看 1+3+5 等于多少?PPT 出示:1+3+5师:大家继续看+7+9 这道算式等于多少?这题怎么样?生:很简单师:你们觉得老师下一个会加多少?试着说一说生:+11师:果然是,为什么?生:每次多两个师:同学们真是火眼金睛。非常好,来我们继续往下加?Ppt 快速出示:生:+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79师: 这道算式怎么样?生:很长师:我们的比赛规则是谁先算出答案者,就获胜。我这里为同学们准备了一个计算器,谁想用计算器计算?好,比赛现在开始。师在黑板上算答案。师:老师已算出答案,是 1600,和屏幕上的答案比对一下,也是 1600,看来我算对了。师:你们有什么疑问吗?生:你为什么能算的那么快?我算的快的秘方是:真的想知道?秘密就在这节课中,我相信在这节课中,只要你们细心观察,认真思考,寻找规律并且发现规律,你们也能像我这样很快地算出这类有规律题目的答案,来,我们一起来探究,好不好?教学过程:师:现在我们开始上课。一、 探究新知 教学例 1。(1)观察四幅图,引出正方形数师:为了帮助同学们揭开这个题目的秘密,老师请它来帮忙,来,看,它是谁?PPT 出示:生:正方形师:完整的说就是几个?生:1 个正方形师:来,我们继续来观察,这里面生:4 个正方形师:这一个呢?师:大家猜一猜下一个图形呢?生:16 个正方形师:确实是,你们怎么猜到的?谁能说一说?师:16,你是怎么得到的?如果让你列式,你会怎么列?生:44师:你能试着解释一下吗?师: 44 它的简单表示形式是 42师:也就是说 4 可以表示这个正方形中每列小正方形的个数反过来说,如果我们知道了每列小正方形的个数,这个大正方形中小正方形个数等于每列小正方形个数的平方生:每列小正方形个数的平方继续引出 1 22232师:像 1、4、9、16 这样的数字,它们有一个共同的名字,来,我们一起来看:Ppt 展示:正方形中有几个正方形排列的小点或者圆或者正方形等物体,物体总数就是正方形数。正方形数也叫平方数。师:你还能再试着说一说其他的正方形数吗?生:25、36、49(2)继续观察图形中每次增加的小正方形的排列以及和等于加数个数的平方师:非常好,我们再继续观察这四个正方形,它们之间又有哪些联系和规律呢?我们继续来找一找吧!生:第二个正方形比第一个正方形多 3 个小正方形,师:太棒了,这位同学观察的真仔细。哪 3 个小正方形?你能用手来比划一下吗?引导学生说出每次增加的都是直角边Ppt 展示,用不同颜色区分Ppt 接着出示箭头以及增加的个数师:在这个过程中,我们还可以用什么样的算式来表示?生:1+3=2 2师:在这里,1+3 表示这个正方形中生:所有小正方形的个数师:这个正方形中所有小正方形的个数就等于生:每列小正方形个数的平方师:大家再仔细观察,这一列小正方形的个数和这个算式中加数的个数有什么关系呢?生:相等。师:那也就是说这个正方形中小正方形的个数等于加数个数的平方这个正方形用哪个算式来表示的?生:1+3师:也就是说 1+3 等于加数个数的平方以同样的方式教学下面两个图形的变化情况(3)练习 1+3+5+7+9+11=( )2并探讨 11 和 6 之间的关系师:利用刚才的发现的规律,你能快速解决下面这道题吗?师出示:1+3+5+7+9+11=( ) 2 师:这是几的平方呢?学生发表自己的看法。ppt 展示答案和图形。师:1、11 代表图中的哪部分?2、6 又代表图中哪部分?3、从图形上来看,11 和 6 之间又有什么关系呢?师用课件演示过程得出结论:(最后的数+1)2 = 每列小正方形的个数师:这个规律对吗?来,我们来验证一下。用前面用过的那三个算式来验证师:看样我们这个发现是生:对的(4)用平方数解决的条件师:是不是所有的算式都能用这两种方法来计算呢?生:不是师:到底具备什么样的条件才能用这两种方法来解决呢?来,大家观察这道算式有什么特点?生发表自己的看法师:这个加法算式能不能构成一个正方形,用平方数计算?1+3+5+9+11生说原因师展示师:到底什么样的数加起来能够成正方形呢?这样的算式可以吗?3+5+7+9生说原因师展示总结:a.从 1 开始b.连续C、奇数(5)解决上课时的比赛题目,最终建模师:通过我们继续探讨,我们发现只有从 1 开始,连续奇数的和才能用平方数解决,我们课前比赛的这道算式你能快速解决了吗?生用知识解决上课时的比赛题目师:我要是继续往下加,加到 113,你还会解决吗?Ppt 展示1+3+5+7+9+11+13+15+17+19+21+23+25+27+.+109+111+113=师:我再继续往下加,你还会吗?生:会。师:好,我再继续往下加,继续加,加到 n,这个结果等于多少呢?Ppt 展示1+3+5+7+9+.+n=(n+1)2) 2师:有了这个公式,我们以后就不怕算式有多长,最后加的数有多大了,你们说是吗?二、从另外方面观察图形并建模师:其实刚才的正方形我们还可以换个角度观察,我们会有更多的发现。例如斜着观察,你还可以列出什么样的算式,发现什么样的规律?PPT 展示图形生列式:1+2+1=2 21+2+3+2+1=32师:边长为 n 的正方形,图形是什么样的呢?怎么列式呢?师出示:1+2+3+n+3+2+1=n 2师:由此可见,当我们遇到复杂数的问题不妨可以借用图形来解决,当然从直观的图形中我们也能发现许多许多数的规律,你们说是吗?这就是我们这节课所学的数与形师板书课题:数与形师:来,我们回顾一下这节课我们所学的内容,我们把数与形结合起来,发现了我们原来不知道的一些秘密,通过这节课的学习,我们能深刻体会到:数与形有着十分密切的联系,这正如我国Ppt 展示:正如我国著名数学家华罗庚所说: 数缺形时少直观, 形少数时难入微, 数形结合百般好, 隔离分家万事休。 三、拓展知识师:你们知道我们这节课所用到的正方形数是谁先提出来的吗?是古希腊数学家毕达哥拉斯,还研究了三角形数,五边形数,六边形数等等它们的一些规律,如果大家有兴趣想了解更多,可以上网或阅读有关书籍进行继续了解,好吗?师:不只是国外数学家对数形结合感兴趣,有研究,有贡献,其实我国数学家在这方面也作出了卓越的贡献。例如我国南宋末年数学家、数学教育
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店合同范本
- 2025中介代理的合同范本
- 2024年8月份核电站外围砂砾石辐射屏蔽层采购协议
- 业务转账合同样本
- 汽车零配件采购协议样式
- 本的场地租赁合同范文二零二五年
- 二零二五版房屋场地短期出租合同书
- 二零二五菜场摊位转让协议合同书
- 2025品牌专卖店加盟合同范本
- 二零二五珠海房屋租赁合同范例
- 风湿免疫科学教学设计案例
- 金属风管预制安装施工技术
- 2023年数学竞赛AMC8真题D卷(含答案)
- 宴席设计实务(烹饪专业高职)全套教学课件
- 牙刷的营销方案和策略
- 公路工程项目管理重点
- 2023小米年度报告
- 公司招聘面试工作方案三篇
- 设计交底记录表
- 职工食堂餐饮服务投标方案(技术方案)
- 黄山杯评审材料验收资料
评论
0/150
提交评论