




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率论与数理统计期末考试题一. 填空题(每小题 2 分,共计 60 分)1、A、B 是两个随机事件,已知 ,则0.1p(AB)0.3,)(,5.)A(p0.4 、 0.7 、 1/3 , = 0.3 。)-(pB(P2、一个袋子中有大小相同的红球 4 只黑球 2 只, (1)从中不放回地任取 2 只,则第一、二次取到球颜色不同的概率为: 8/15 。(2)若有放回地任取 2 只,则第一、二次取到球颜色不同的概率为: 4/9 。(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 .3、设随机变量 X 服从参数为 6 的泊松分布,则 1- 1Xp6e4、设随机变量 X 服从 B(2,0. 6)的二项分布,则 0.36 , 2Y 服从 B(8,0. 6)的二项分布, 且 X 与 Y 相互独立,则 服从 YXB(10 ,0. 6) 分布, 6 。)(E5、设二维随机向量 的分布律是有 ),(YX则 _0.3_, 的数学期望a_0.5_, 的相关系数 _0.1_。)(XEYX与 xy第 1 页共 4 页6、三个可靠性为 p0 的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为: ;3p(2)若把它们并联成一个系统,则系统的可靠性为: ;3)1(7、 (1)若随机变量 ,则 0.5; _13/3,X)3,1(U20 Xp2XE3/4 4/3? )(XDY0 1 0 1 0.3 0.20.2 a(2)若随机变量 且 则 0.6826 , X)4 ,1(N8413.0(3XP3 看成求 E(2x+1) , 16 ) 。,1Y则8、随机变量 X、Y 的数学期望 E(X)=1,E(Y)=2, 方差 D(X)=1,D(Y)=2, 且X、Y 相互独立,则: 5 , 17 9? )2(YX)2(YXD。9、设 及 分别是总体 的容量为 10,15 的两个独立样本,10,.15,. )6,0(N分别为样本均值, 分别为样本方差。YX2,S则: N(20,3/5) , N(0,1) , = 0.3174 ,YX1YXp, F(9,14) 。231S)9(221S此题中 。 843.010、在假设检验中,显著性水平 a 是用来控制犯第一类错误的概率,第一类错误是指: H0 成立的条件下拒绝 H0 的错误 。第 2 页共 4 页二、 (6 分)已知随机变量 X 的密度函数 其 它 , 01)(xaxf求:(1)常数 , (2) (3)X 的分布函数 F(X) 。a51.0(p解:(1)由 2/,1)(dxf得(2) = 25.0Xp.015.0675.0)2()(dxdxf(3) 2xxF1 , )(2三、 (6 分)设随机变量 X,Y 的概率密度分别为:, ,且随机变量 X,Y 相)(xfX其 它 , 0,32x)(yf其 它 , 0,12y互独立。(1)求(X,Y)的联合概率密度为: ),(yxf(2)计算概率值 。XYp2解:(1) X,Y 的边缘密度分别为 : 其 他, 其 他, 0 1026)()( 3)()(101022yydxxyfyf xfxfYX,Y 相互独立,可见(X,Y)的联合概率密度为 , )()(),( yfxfxfYX2其 它 , 010,6),(2yxyxf41022 096),()( yxy dxdYfXYP四、 (8 分) 从总体 中抽取容量为 25 的一个样本,样本均值和样) ,(2uN本方差分别是: , 9,80SX36.9)24(,.1)24(639.2)4( 05.75.025. xxt求 u 的置信度为 0.95 的置信区间和 的置信度为 0.95 的置信区间。解: (1)n=25, 置信水平 ,./,9.,135.2)(025.t由此 u 的置信水平为 0.95 的置信区间为:9,802SX, 即 4)63.5()238.10(2) n=25,置信水平 ,5./,95.136.9)24(,.1)24(05.97.0 xx由此 的置信水平为 0.95 的置信区间为:92S24)42.17,95()24,)(92475.005. 五 、 (10 分)设总体 X 服从 未知。 是 X 的一个样本,uuN,),(2已 知n,1求 的矩估计量,并证明它为 的无偏估计。u解: 样本 的似然函数为 :n,.12)(21exp)2(,.( 2/1 nkinn uxL而 1)()l(/),.(l 121 nkin xu令: , 10)(,.l11nkinuxdxL解得: 的最大似然估量 2inku1 inkX1, 它为 的无偏估计量. 2uXnEk)()1六、 (5 分)一工厂生产化学制品的日产量(以吨计)近似服从正态分布,当设备正常时一天产 800 吨, 现测得最近 5 天的产量分别为:785,805,790,790,802,问是否可以认为日产量显著不为 800 吨。 (取 ) ,此题中 。05.764.2)(05.t解: 按题意日产量 未知,现取 检验假设:X2),(uN.180,80:1HuH:用 t 检验,现有 ,拒绝域为 :, 5.n764.2)(.t, 176.25/sxt算得: , , 219.8,4.9s4527.1/80sxtt 值不在拒绝域内,故接受 ,认为日产量没有显著变化. 10H七、 (5 分)设温度计制造厂商的温度计读数近似服从正态分布,现他声称他的温度计读数的标准差为不超过 0.5, 现检验了未 知uN,),(2一组 16 只温度计,得标准 0。7 度,试检验制造商的言是否正确(取 ) ,05.此题中 。解: 按题意温度计读数 未知,现取96.4)15(20. X2),(uN检验假设:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024中铝资本及所属公司社会招聘18人笔试参考题库附带答案详解
- 以德掩言以行见理-【2022年暑假预习】云名著《世说新语》之“德行”卷
- 2024中移铁通有限公司甘肃分公司社会招聘10人笔试参考题库附带答案详解
- 人教版(部编版)初中语文七年级下册 2 说和做-记闻一多先生言行片段 教案2
- 七年级地理下册 第六章 第一节 北京教学设计1 中图版
- 初中浙教版第十课 表格的应用表格教案设计
- 九年级化学下册 第12单元 化学与生活 12.1 人类重要的营养物质教学设计1 (新版)新人教版
- 2024中国葛洲坝集团路桥工程有限公司社会成熟人才公开招聘47人笔试参考题库附带答案详解
- 2024中国能源建设集团(股份)有限公司招聘239人笔试参考题库附带答案详解
- 安全生产执法监察培训
- 2025年餐厅兼职劳动合同
- 2025年北京市东城区高三一模数学试卷(含答案)
- 幼儿园教育评估指南解读
- 学生欺凌防治工作“一岗双责”制度
- 2025-2030中国电子焊膏行业市场发展趋势与前景展望战略研究报告
- 炎德·英才大联考湖南师大附中2025届高三月考试卷(七)物理试卷(含答案)
- 剪映剪辑教学课件
- Radware AppDirector负载均衡器指导书2.11v1.0
- 建设单位保证安全生产措施方案
- 1健康调查问卷一
- 2025年新音乐节明星艺人歌手演出场费报价单
评论
0/150
提交评论