




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题:函数的单调性教学目标:1 知识与技能 (1)通过已学过的函数特别是二次函数,理解函数的单调性概念;(2)学会运用函数图象理解和研究函数的性质;(3)了解数形结合的思想及严密的逻辑推理,培养学生良好的数学思想和数学方法;(4)能够熟练应用定义判断数在某区间上的的单调性2过程与方法 能够观察研究函数图象的特点,来研究函数的单调性性质3情感、态度、价值观:培养学生学习数学的兴趣,体会函数图象的变化规律及蕴含本质教学方法 :引导发现法教学重点:函数的单调性教学难点:利用函数的单调性定义判断、证明函数的单调性 教学程序与环节设计:1创设情境 :问题引入2组织探究:通过几个函数的图象的“上升“和”下
2、降“的整体认识探究函数的单调性的定义及判断函数单调性的方法步骤3尝试练习:利用函数的图象确定函数的单调区间4巩固提高:利用函数的单调性定义判断、证明函数的单调性5作业反馈:单调性定义的应用教学过程:一、 引入课题1 在初中,有没有学过函数的增减性?(学过)一些函数的增减性是怎样知道的?(观察图象得出)yx1-11-12画出下列函数的图象,观察其变化规律:(1) f(x) = -x 从左至右图象上升还是下降 _? 在区间 _ 上,随着x的增大,yx1-11-1f(x)的值随着 _ (2) f(x) = x2在区间 _ 上,f(x)的值随着x的增大而 _ 在区间 _ 上,f(x)的值随着x的增大而
3、 _ (3) 如何把上述的图象所反映的特征用数学符号语言表示出来?引导学生探讨,归纳二、新课教学(一)函数单调性定义1增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数(increasing function)思考:仿照增函数的定义说出减函数的定义(学生活动)注意: 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2) 2函数的单调性定义如果函数y=f(x)在某个区间上是
4、增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 任取x1,x2D,且x1x2; 作差f(x1)f(x2); 变形(通常是因式分解和配方); 定号(即判断差f(x1)f(x2)的正负); 下结论(即指出函数f(x)在给定的区间D上的单调性)(二)典型例题例1根据函数图象说明函数的单调性如图,是定义在区间上的函数,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?xy0-55xy-55解:函数的单调区间有,。其中在区间,上是减区间
5、,在区间,上是增函数。巩固练习:课本P36练习第3题题后小结:以上是通过观察图象的方法来说明函数在某一区间的单调性,是一种比较粗略的方法,那么,对于任给函数,我们怎样根据增减函数的定义来证明它的单调性呢?例2根据函数单调性定义证明函数的单调性物理学中的玻意耳定律(k为正常数)告诉我们,对于一定量的气体,当其体积V减小时,压强P将增大,试用函数的单调性证明之。分析:按题义,只要证明在区间(0,+)上是减函数即可。证明:根据单调性的定义,设,是定义域(0,+)上的任意两个实数,且0;由0;又K0,于是0,即所以,函数,V(0,+)是减函数。也就是说,当体积V减少时,压强P将增大。 巩固练习:练习:
6、判断函数 在(0,+)上单调性, 并给予证明。思考:画出反比例函数的图象 这个函数的定义域是什么? 它在定义域上具有单调性吗?为什么?请你确定此函数的单调性,并证明你的结论说明:本例可利用几何画板、函数图象生成软件等作出函数图象题后小结:函数的单调性是在定义域内的某个区间上的性质,证明过程的第一步任取变量一定要注意其所在的区间范围。三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 作 差 变 形 定 号 下结论四、 业布置1 书面作业:课本P43习题13(A组) 第1- 4题2.提高作业:(1),f(
7、x)=x2-2bx+b在x ( -,1) 上是减函数,求b的取值范围 (2).f(x)=(b-2)x2-2bx+b在x ( -,1 上是减函数, 求b的取值范围 .(1)教学过程与操作设计:环节教学内容设计师生双边互动创设情境阅读教材P90的具体实例(1)(5),思考下列问题:1它们的对应法则分别是什么?2以上问题中的函数有什么共同特征?(答案)1(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求1次方)2 上述问题中涉及到的函数,都是形如的函数,其中是自变量,是常数生:独立思考完成引例师:引导学生分析归纳概括得出结论师生:共同辨析这种新函数与指数函数的异同组织探究材料一
8、:幂函数定义及其图象一般地,形如的函数称为幂函数,其中为常数下面我们举例学习这类函数的一些性质作出下列函数的图象:(1);(2);(3);(4);(5) 解 列表(略) 图象师:说明:幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律师:引导学生应用画函数的性质画图象,如:定义域、奇偶性师生共同分析,强调画图象易犯的错误环节教学内容设计师生双边互动组织探究材料二:幂函数性质归纳(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(
9、2)时,幂函数的图象通过原点,并且在区间上是增函数特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表材料三:观察与思考观察图象,总结填写下表:定义域值域奇偶性单调性定点材料五:例题例1(教材P92例题)例2 比较下列两个代数值的大小:(1),(2),例3 讨论函数的定义域、奇偶性,作出它的图象,并
10、根据图象说明函数的单调性师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出生:独立思考,给出解答,共同讨论、评析环节呈现教学材料师生互动设计尝试练习1利用幂函数的性质,比较下列各题中两个幂的值的大小:(1),;(2),;(3),;(4),2作出函数的图象,根据图象讨论这个函数有哪些性质,并给出证明3作出函数和函数的图象,求这两个函数的定义域和单调区间4用图象法解方程:(1); (2)探究与发现1如图所示,曲线是幂函数在第一象限内的图象,已知分别取四个值,则相应图象依次为: 2在同一坐标系内,作出下列函数的图
11、象,你能发现什么规律?(1)和;(2)和规律1:在第一象限,作直线,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列规律2:幂指数互为倒数的幂函数在第一象限内的图象关于直线对称作业回馈1在函数中,幂函数的个数为:A0 B1 C2 D3环节呈现教学材料师生互动设计2已知幂函数的图象过点,试求出这个函数的解析式3在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R与管道半径r的四次方成正比(1)写出函数解析式;(2)若气体在半径为3cm的管道中,流量速率为400cm3/s,求该气体通过半径为r的管道时,其流量速率R的表达式;(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率41992年底世界人口达到548亿,若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年系统分析师考试模拟分析试题及答案
- 防拐骗安全教育课件模板
- 2025餐馆转让的合同协议书
- 盐城幼儿师范高等专科学校《城市公共事业管理理论与实践》2023-2024学年第二学期期末试卷
- 山西省吕梁市兴县多校2025届九年级上学期12月月考数学试卷(含答案)
- 浙江省温州市2025届高三下学3月二模试题 物理 含解析
- 民办万博科技职业学院《音乐律动(二)》2023-2024学年第一学期期末试卷
- 河北师范大学汇华学院《大数据数据库应用技术》2023-2024学年第二学期期末试卷
- 广东佛山市石门中学2025届高三新时代NT抗疫爱心卷(II)生物试题含解析
- 山东省广饶一中重点中学2025届高三下学期返校热身考试化学试题含解析
- GB/T 20854-2007金属和合金的腐蚀循环暴露在盐雾、“干”和“湿”条件下的加速试验
- 干部履历表(国家机关事业单位)
- 第25讲飞剪演示系统控制程序设计
- DN400输油臂总体及立柱设计毕业设计说明书
- 六年级下册数学课件-《探索规律》 人教新课标 (共14张PPT)
- 手术知情同意书(阴宫)
- 2021年阿勒泰市法院书记员招聘考试试题及答案解析
- 压力管道基础知识(管理类)
- 快递企业员工劳动合同范本1
- 电气设计任务书
- 排油烟设施清洗技术规程
评论
0/150
提交评论