版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.3 实际问题与二次函数,第1课时 二次函数与图形面积,习水县东皇中学 袁吉权,1.掌握图形面积问题中的相等关系的寻找方法,并会应用函数关系式求图形面积的最值; 2.会应用二次函数的性质解决实际问题.,1. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x= 时,y的最 值是 . 2. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 .当x= 时,函数有最_ 值,是 . 3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最_ 值,是 .,x=3,(3,5),3,小,5,x=-4,(-4,-1),-4,大,-1,x=2,(2,1),2,大,
2、1,问题:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?,分析:先写出S与l的函数关系式,再求出使S最大的l的值.,矩形场地的周长是60m,一边长为l,则另一边长为 m,场地的面积: (0l30),S=l(30-l),即S=-l2+30l,请同学们画出此函数的图象,可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数图象的最高点,也就是说,当l取顶点的横坐标时,这个函数有最大值.,即l是15m时,场地的面积S最大.(S=225),O,(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围; (2)在自变
3、量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.,解决这类题目的一般步骤,小组讨论 如图,从一张矩形纸较短的边上找一点E,过E点剪下两个正方形,它们的边长分别是AE、DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?,解:设矩形纸较短边长为a,设DE=x,则AE=a-x. 那么两个正方形的面积和y为y=x2+(a-x)2=2x2-2ax+a2.当x=a/2时, y最小=a2/2, 即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.,一般地,因为抛物线y=ax2+bx+c的顶点是最低(高)点,所以当 时,二次函数y=ax2+bx+c有最小(大)值 .,其次:我们还可以用配方法来解决实际问题中的最值,1将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2,1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 墙面涂装工程劳务外包合约
- 购销合同管理的信息化
- 【项目管理】邵洪芳 教材精讲班教案 30-第3章-3.2.1-施工合同管理(四)
- 2024新西兰的首都新西兰的房屋买卖合同模板
- 2024自然人借款合同模板
- 演绎劳务合同范例
- 房东转让协议合同范例
- 建筑装饰中的画面构图与比例考核试卷
- 国际大豆交易合同范例
- 天然气在海洋利用中的应用考核试卷
- 广东常用的100种植物
- 生产现场作业十不干PPT课件
- 输电线路设计知识讲义
- 物料承认管理办法
- 业主委员会成立流程图
- AEFI防范与处置PPT课件
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析练习(带答案)
- 小学综合实践活动方便筷子教案三年级上册精品
- 阜阳市肿瘤医院病房大楼建筑智能化设备、材料采购及安装系统工程技术要求
- 意大利汽车零部件企业
- 食品经营操作流程图112
评论
0/150
提交评论