3.3.2简单线性规划(最终版)ppt课件.ppt_第1页
3.3.2简单线性规划(最终版)ppt课件.ppt_第2页
3.3.2简单线性规划(最终版)ppt课件.ppt_第3页
3.3.2简单线性规划(最终版)ppt课件.ppt_第4页
3.3.2简单线性规划(最终版)ppt课件.ppt_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1,复习:,1、直线的截距:,注意:截距不是距离,有正负,横截距:直线与X轴交点横坐标,纵截距:直线与Y轴交点纵坐标,2,复习:,2、在同一坐标系上作出下列直线:,2x+y=0;2x+y=1;2x+y=-3;2x+y=4;2x+y=7,x,Y,o,观察图像:形如2x+y=t(t0)的直线有什么特点?,3,复习:二元一次不等式(组)表示平面区 域的方法:,x+y-10,x+y-10,(3)二元一次不等式组表示的平面区域是各个不等式表示的平面区域的交集,即各个不等式表示的平面区域的公共部分。,(1)直线定界:Ax+By+C=0(注意实线和虚线的区别); (2)特殊点定域:一般的,选取原点(0,0)

2、。,4,问题1:某工厂用A,B两种配件生产甲,乙两种产品,每生产一件甲种产品使用4个A配件耗时1h,每生产一件乙种产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?,分析:把问题1的有关数据列表表示如下:,设甲,乙两种产品分别生产x,y件,5,将上面不等式组表示成平面上的区域,设甲,乙两种产品分别生产x,y件,由己知条件可得:,y,4,8,4,3,o,区域内所有坐标为整数的点P(x,y),安排生产任务x,y都是有意义的.,6,思考: 若生产1件甲种产品获利2万元,生产1 件乙 种产品获利3万元,采用哪种生产安

3、排利润最大?,若设利润为z,则z=2x+3y,这样上述问题转化为:,当x,y在满足上述约束条件时,z的最大值为多少?,分析:设甲,乙两种产品分别生产x,y件,则利润可以表示为:,2x+3y,7,z=2x+3y表示与2x+3y=0平行的一组直线,8,问题:求利润z=2x+3y的最大值.,转化为求直线 的截距 的最大值,M(4,2),9,象这样关于x,y一次不等 式组的约束条件称为 线性约束条件,Z=2x+3y称为目标函数,(因这里 目标函数为关于x,y的一次式,又 称为线性目标函数,在线性约束下求线性目标函数的最值问题,统称为线性规划.,10,满足线性约束的解(x,y)叫做可行解,所有可行解组成

4、的集合叫做可行域,使目标函数取得最值的可行解叫做这个 问题的最优解,变式:若生产一件甲产品获利1万元, 生产一件乙产品获利3万元,采用哪种 生产安排利润最大?,11,N(2,3),变式:求利润z=x+3y的最大值.,12,解线性规划问题的步骤:,(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域 有公共点且纵截距最大或最小的直线,(3)求:通过解方程组求出最优解;,(4)答:作出答案。,(1)画:画出线性约束条件所表示的可行域;,13,练习解下列线性规划问题:,1、求z=2x+y的最值,使式中的x、y满足约束条件:,14,Zmin=-3,Zmax=3,15,线性规划,问

5、题: 设z=2x+3y,式中变量满足 下列条件: 求z的最大值与最小值。,目标函数 (线性目标函数),线性约 束条件,任何一个满足不等式组的(x,y),可行解,可行域,所有的,最优解,线性规划问题,16,解决线性规划问题的步骤:,画画出线性约束条件所表示的可行域,答做出答案,求根据观察的结论,先求交点的坐标,再求出最优解,移在目标函数所表示的一组平行线(与目标函数中z=0平行)中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线,小结,17,小 结,本节主要学习了线性约束下如何求目 标函数的最值问题 正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健 线性目标函数的最

6、值一般都是在可行域 的顶点或边界取得. 把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定要 弄清楚.,18,体验:,二、最优解一般在可行域的顶点处取得,三、在哪个顶点取得不仅与B的符号有关, 而且还与直线 Z=Ax+By的斜率有关,一、先定可行域和平移方向,再找最优解。,19,把问题1的有关数据列表表示如下:,设甲,乙两种产品分别生产x,y件,20,21,y,4,8,4,3,o,M,22,M(4,2),23,y,4,8,4,3,o,M,24,简单的线性规划问题(二),25,一、复习概念,y,x,4,8,4,3,o,把求最大值或求最小值的的函数称为目标函数,因为它是关于变

7、量x、y的一次解析式,又称线性目标函数。,满足线性约束的解 (x,y)叫做可行解。,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题。,一组关于变量x、y的一次不等式,称为线性约束条件,由所有可行解组成的集合叫做可行域。,使目标函数取得最大值或最小值的可行解叫做这个问题的最优解。,可行域,可行解,最优解,26,二.回顾解线性规划问题的步骤,(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有 公共点且纵截距最大或最小的直线,(3)求:通过解方程组求出最优解;,(4)答:作出答案。,(1)画:画出线性约束条件所表示的可行域;,27,练习解下列线性规划

8、问题:,1、求z=2x+y的最大值,使式中的x、y满足约束条件:,28,Zmin=-3,Zmax=3,29,例2、一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t、硝酸盐15t。现库存磷酸盐10t、硝酸盐66t,在此基础上生产这两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。并计算生产甲、乙两种肥料各多少车皮,能够产生最大的利润?,解:设x、y分别为计划生产甲、乙两种混合 肥料的车皮数,于是满足以下条件:,x,y,o,30,解:设生产甲种肥料x车皮、乙种肥料y车皮, 能够产生利润Z万元。目标

9、函数为Zx0.5y, 可行域如图:,把Zx0.5y变形为y2x2z,它表示斜率 为2,在y轴上的截距为2z的一组直线系。,x,y,o,由图可以看出,当直线经过可行域上的点M时, 截距2z最大,即z最大。,答:生产甲种、乙种肥料各 2车皮,能够产生最大利 润,最大利润为3万元。,M,容易求得M点的坐标为 (2,2),则Zmax3,31,3、制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损. 某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100和50,可能的最大亏损率分别为30和10. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1

10、.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?,【解题回顾】要能从实际问题中,建构有关线 性规划问题的数学模型.关键求出 约束条件和目标函数.,32,解:设投资方对甲、乙两个项目各投资x、y万元,依题意线性约束条件为:,目标函数为:,作出可行域,可知直线Z=x+0.5y通过点A时利润最大,由,(万元),答:,33,练习题,1、某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元,甲、乙产品都需要在A、B两种设备上加工,在每台A、B上加工1件甲所需工时分别为1h、2h,加工1件乙所需工时分别为2h,1h.A、B两种设备每月有效使用台时数分别为400h

11、和500h。如何安排生产可使收入最大?,解: 设每月生产甲产品x件,生产乙产品y件,每月收入为Z千元,目标函数为Z3x2y,满足的条件是,34,Z 3x2y 变形为它表示斜率为 的直线系,Z与这条直线的截距有关。,X,Y,O,400,200,250,500,当直线经过点M时,截距最大,Z最大。,M,解方程组,可得M(200,100),Z 的最大值Zmax 3x2y800(千元),故生产甲产品200件, 乙产品100件,收入最大, 为80万元。,35,小 结:,二元一次不等式表示平面区域,直线定界,特殊点定域,简单的线性规划,约束条件,目标函数,可行解,可行域,最优解,求解方法:画、移、求、答,

12、36,作 业: 课本 P106 4,37,简单的线性规划问题(三),38,复习回顾:,二元一次不等式表示平面区域,直线定界,特殊点定域,简单的线性规划,约束条件,目标函数,可行解,可行域,最优解,求解方法:画、移、求、答,39,例、要将两种大小不同规格的钢板截成A、 B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示 :,今需要A,B,C三种规格的成品分别为15,18,27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少。,解:设需截第一种钢板x张、第二种钢板y张,可得,40,2x+y=15,x+3y=27,x+2y=18,x+y =0,经过可行域内的整点B

13、(3,9)和C(4,8)且和原点距离最近的直线是x+y=12,它们是最优解.,答:(略),作出一组平行直线z= x+y,,目标函数z=x+y,打网格线法,在可行域内打出网格线,,当直线经过点A时z=x+y=11.4,但它不是最优整数解,,将直线x+y=11.4继续向上平移,41,2x+y=15,x+3y=27,x+2y=18,x+y =0,直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解.,作出一组平行直线z = x+y,,目标函数 z = x+y,当直线经过点A时z=x+y=11.4,但它不是最优整数解.作直线x+y=12,x+y=12,解得交点B,C的坐标B(3,9)和C(4,8),调整优

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论