




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,导入新课,讲授新课,当堂练习,课堂小结,3.2 简单图形的坐标表示,第3章 图形与坐标,八年级数学下 教学课件,1. 能建立适当的直角坐标系,描述图形的位置; (重点) 2.通过用直角坐标系表示图形的位置,使学生体会平面直角坐标系在实际问题中的应用(难点),学习目标,导入新课,情境引入,问题:如果某小区里有一块如图所示的空地,打算进行绿化,小明想请他的同学小慧提一些建议,小明要在电话中告诉小慧同学如图所示的图形,为了描述清楚,他使用了直角坐标系的知识你知道小明是怎样叙述的吗?,问题:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中
2、的坐标.,A,B,C,D,讲授新课,4,4,y,x,(A),B,C,D,解:如图,以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系 此时,正方形四个顶点A,B,C,D的坐标分别为: A(0,0), B(4,0), C(4,4), D(0,4).,O,D,A,B,C,D,A(0,-4), B(4,-4),C(4,0), D(0,0).,想一想:还可以建立其他平面直角坐标系,表示正方形的四个顶点A,B,C,D的坐标吗?,A(-4,0), B(0,0),C(0,4), D(-4,4).,A(-4,-4), B(0,-4),C(0,0), D(-4,0).,A(-2,-2),
3、B(2,-2),C(2,2), D(-2,2).,追问由上得知,建立的平面直角坐标系不同,则各点的坐标也不同你认为怎样建立直角坐标系才比较适当?,【总结】平面直角坐标系建立得适当,可以容易确定图形上的点,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系又如以正方形的中心为原点建立平面直角坐标系建立不同的平面直角坐标系,同一个点就会有不同的坐标,但正方形的形状和性质不会改变,例1:如图,矩形ABCD的长和宽分别为8和6, 试建立适当的平面直角坐标系表示矩形ABCD 各顶点的坐标,并作出矩形ABCD.,典例精析,因为BC = 8,AB = 6,可得点A,C,D的坐标分别为: A(0,6)
4、,C(8,0),D(8,6).,依次连接A,B,C,D , 可得所求作的矩形.,解:如图所示,以点B为坐标原点,分别以BC,AB 所在直线为x 轴,y轴,建立平面直角坐标系. 规定1个单位长度为1. 点B的坐标为(0,0).,变式:长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(2,3)请你写出另外三个顶点的坐标,解:如图建立直角坐标系, 长方形的一个顶点的坐标为A(-2,-3), 长方形的另外三个顶点的坐标分别为B(2,3),C(2,3),D(2,3),由已知条件正确确定坐标轴的位置是解决本题的关键,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐
5、标系确定以后,点的坐标也就确定了,方法总结,右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋的坐标是(2,1),白棋的坐标是(1,3),则黑棋的坐标是_,解析:由已知白棋的坐标是(2,1),白棋的坐标是(1,3),可知y轴应在从左往右数的第四条格线上,且向上为正方向,x轴在从上往下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋的坐标是(1,2),练一练,(1,2),当堂练习,y,A,B,C,已知A(1,4), B(-4,0),C(2,0). ABC的面积是 2.若BC的坐标不变, ABC的面积为6,点A 的横坐标为-1,那么 点A的坐标为 ,12,O,(1,4),(-4,0),(2,0),C,y,A,B,(-4,0),(2,0),(-1,2)或(-1,-2),O,3.对于边长为4的正三角形ABC,建立适当的直角坐标系,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息咨询合同标准文本 英语
- 免烧砖买卖合同标准文本
- 公路机电合同样本
- 个人资金托管合同标准文本
- 中标多家医院项目合同样本
- 产品股权合同样本
- 企业废料收购合同样本
- 个人档案合同标准文本
- 策划调酒师考试的多元练习试题及答案
- 2025上海市郊区土地流转承包合同(I)
- 基坑工程土方开挖支护与降水监理实施细则
- 江苏徐州市深地科学与工程云龙湖实验室社会招考聘用9人模拟试卷【附答案解析】
- 土方回填施工记录表
- 植物根茎叶课件
- 反生产行为讲稿
- 施工现场消防安全技术交底
- 冀教版二年级语文下册看图写话专项加深练习题含答案
- 焊接工艺评定及焊接工艺技术评定管理标准
- 洗衣房各岗位工作流程
- 基于SWOT分析的义乌市现代物流业发展研究
- 基于自适应滤波对音频信号的处理详解
评论
0/150
提交评论