下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第18章18.2勾股定理的逆定理学案(第2课时) 学习目标1灵活应用勾股定理及逆定理解决实际问题。2进一步加深性质定理与判定定理之间关系的认识。学习重点:灵活应用勾股定理及逆定理解决实际问题。学习难点:灵活应用勾股定理及逆定理解决实际问题。学习过程一、自学导读在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。 阅读课本了解方位角,及方位名词;依题意画出图形二、合作探究1如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航
2、向为北偏西 40,问:甲巡逻艇的航向?2.如图,南北向MN为我国领域,即MN以西为我国领海,以东为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?三、课堂反馈1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A.4组 B.3组 C.2组 D.1组2. 三角形的
3、三边长分别为a2b2、2ab、a2b2(a、b都是正整数),则这个三角形是() A直角三角形 B钝角三角形 C锐角三角形 D不能确定3如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A.1倍 B. 2倍 C. 3倍 D. 4倍4. 下列各命题的逆命题不成立的是( )A.两直线平行,同旁内角互补 B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等 D.如果a=b,那么a2=b25五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) 6、下列定理中,没有逆定理的是( )A:两直线平行,内错角相等 B:直角三角形两锐角互
4、余C:对顶角相等 D:同位角相等,两直线平行7、已知a、b、c是三角形的三边长,如果满足,则三角形的形状是( )A:底与边不相等的等腰三角形 B:等边三角形 C:钝角三角形 D:直角三角形8. 如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE= BC,F为CD的中点,连接AF、AE,问AEF是什么三角形?请说明理由. 9.已知在ABD中,AB=13, BC=10,BC 边上的中线AD=12,求证:AB= AC10.已知,如图,在RtABC中,C=90,1=2, CD=1.5,BD=2.5,求AC的长.四知识检测1一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别
5、为 ,此三角形的形状为 。2小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 3. 在ABC中,若AB2+BC2=AC2,则A+C= 0 .4如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?5若ABC的三边a、b、c,满足(ab)(a2b2c2)=0,则ABC是( )A等腰三角形; B直角三角形;C等腰三角形或直角三角形;D等腰直角三角形。6. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A.7,24,25 B.3,4,
6、5 C.3,4,5 D.4,7,87在下列说法中是错误的( )A在ABC中,CA一B,则ABC为直角三角形.B在ABC中,若A:B:C5:2:3,则ABC为直角三角形.C在ABC中,若ac,bc,则ABC为直角三角形.D在ABC中,若a:b:c2:2:4,则ABC为直角三角形.8. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A2,4,8 B.4,8,10 C.6,8,10 D.8,10,129将勾股数3,4,5扩大2倍,3倍,4倍,可以得到勾股数6,8,10;9,12,15;12,16,20;
7、,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , . 10若ABC的三边a、b、c,满足a:b:c=1:1:,则ABC的形状为 。11若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 . .12若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为 . 13.如图9-1,直角三角形三边上的半圆面积之间关系为:_.14.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为_cm.15.在ABC中,C=90,若AB5,则+=_.16.若一个三角形三边之比为45:28:53,则这个三角形是不是直角三角形_(填“是”或“”不是)17.分别以下列四组数为一个三角形的边长:(1)0.6、0.8、1;(2)5、12、13;(3)8、15、17;能否构成直角三角形?五、拓展延伸1已知:在ABC中,A、B、C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断ABC的形状。2如图,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧园区设计方案
- 糖尿病饮食处方
- 保护我们的关节教案反思
- 物联网校园门禁系统
- 预防手足口病喜洋洋
- 城市绿化招投标管理策略
- 工业厂房抹灰施工协议
- 企业重组法律顾问管理办法
- 商业广场绿化工程承揽合同
- 国际学校地暖安装施工协议
- 凯里市舟溪镇3.19较大爆炸事故
- 医院信息化建设项目验收方案
- 结构加固施工方案说明范本
- 爱心助学基金会章程样本
- 药物性肝损伤的药物治疗
- Python绘图库Turtle详解(含丰富示例)
- 2010年408真题及答案解析
- 【课题研究设计与论证报告】深度学习视角下幼儿园自主游戏支持策略的实践研究
- 厨房设备及工具的使用培训
- 0~36个月儿童中医药健康管理服务
- 第三章药物的化学结构与药代动力
评论
0/150
提交评论