版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.6.2 一元一次不等式组(二)教学目标(一)知识点要求1.进一步巩固解一元一次不等式组的过程.2.总结解一元一次不等式组的步骤及情形.(二)能力训练要求通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能力.(三)情感与价值观要求1.加强运算的熟练性与准确性.2.培养思维的全面性.教学重点巩固解一元一次不等式组.教学难点讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的观点.教学方法自主与讨论相结合的方法即让学生自己解不等式组,然后讨论解中出现的所有情况.教学过程.创设问题情境,导入新课师上节课我们已经学习了如何解由两个一元一次不等式组成的不等式组的解法,本节课我们
2、将继续加强解法的熟练性和准确性,同时还要全面地对所有解的情况进行总结.新课讲授1.例题解下列不等式组(1)(2)(3)(4)师在做这组练习题之前,我们先回忆一下求一元一次不等式的解集和一元一次不等式组的解集的步骤.生解一元一次不等式的步骤为:去分母,去括号,移项、合并同类项,系数化成1.要注意的是在去分母和系数化成1这两步中不等号方向是否改变.解一元一次不等式组的步骤为:分别求出两个一元一次不等式的解集,在数轴上确定它们的公共部分,从而得出不等式组的解集.师好.下面我们先自己独立完成这四个不等式组的求解.(让四个同学在黑板上板书过程).生甲(1) 解:解不等式(1),得x1解不等式(2),得x
3、4.在同一条数轴上表示不等式(1),(2)的解集如图133:图133所以,原不等式组的解集是x1生乙(2) 解:解不等式(1),得x解不等式(2),得x在同一条数轴上表示不等式(1),(2)的解集.如图134:图134所以,原不等式组的解集是x 生丙(3) 解:解不等式(1),得x 解不等式(2),得x4.在同一条数轴上表示不等式(1),(2)的解集,如图135:图135所以,原不等式组的解集为x4.生丁(4) 解解不等式(1),得x4.解不等式(2),得x3.在同一条数轴上表示不等式(1),(2)的解集如图136:图136所以,原不等式组的解集为无解.师大家做得非常棒,下面大家认真观察一下这
4、四组解,你发现了什么?2.讨论解的情况师我们从每个不等式的解集,到这个不等式组的解集,认真观察,互相交流,找出规律.(1)由得x1;(2)由;(3)由得x4;(4)由得,无解.生由(1)得,两个不等式的解集中不等号的方向都是大于号,在数字1和4中取大数1,不等号取大于号.由(2)得,两个不等式的解集中不等号的方向都是小于号,在不等式组的解集中不等号的方向取小于,而数字取比较小的数字.由(3)得,两个不等式的解集中不等号的方向有大于也有小于,数字4,并且是x,x4,最后的结果中是x取大于小数小于大数,即x4.由(4)得,两个不等式的解集中不等号的方向有大于也有小于,并且是x4,x3,因为43,即
5、x应取大于4而小于3的数,而这样的数根本不存在,所以原不等式组的解集为无解.师大家分析得非常精彩.基本上说明了情况,下面我再系统地给大家作一总结:两个一元一次不等式所组成的不等式组的解集有以下四种情形.设ab,那么(1)不等式组的解集是xb;(2)不等式组的解集是xa;(3)不等式组的解集是axb;(4)不等式组的解集是无解.师这是用式子表示,也可以用语言简单表述为:同大取大;同小取小;大于小数小于大数取中间;大于大数小于小数无解.课堂练习1.随堂练习解下列不等式组(1)(2)解(1) 解不等式(1),得x2解不等式(2),得x3在同一数轴上表示不等式(1)、(2)的解集,如图137:图137所以,原不等式组无解.(2) 解:解不等式(1),得x2解不等式(2),得x3在同一数轴上表示不等式(1),(2)的解集,如图138:图138所以,原不等式组的解集为x3.2.补充练习解下列不等式组1.2.1.解: 解不等式(1),得x1解不等式(2),得x4在同一条数轴上表示不等式(1)、(2)的解集如图139:图139所以,原不等式组的解集为x12. 解:解不等式(1),得x2解不等式(2),得x0在同一条数轴上表示不等式(1)、(2)的解集,如图140:图140所以,原不等式组无解.课时小结本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年极限运动项目立项申请报告
- 员工辞职报告(集锦15篇)
- 2024-2025学年芜湖市繁昌县三上数学期末综合测试试题含解析
- 2024-2025学年铜官山区数学三年级第一学期期末调研试题含解析
- 2024年农产品区域公用品牌推广服务合同3篇
- 2024年标准租赁物品回购合同范本版B版
- 父与子读后感集合15篇
- 银行岗位竞聘演讲稿模板汇编五篇
- 四年级上册语文教学计划模板十篇
- 养成工作计划3篇
- DB5105-T 4001-2023 白酒贮藏容器 陶坛
- 网络安全培训-网络安全培训课件
- 人教版高一数学上册必修一第三章同步练习题课后练习题含答案解析及章知识点总结
- 大学有机化学人名反应总结
- 污水、废水处理:芬顿氧化法工艺操作及设计
- CVT电压式互感器的结构及工作原理、内在逻辑
- H型钢梁等强连接计算
- 《文明城市建设问题研究开题报告3000字》
- GB/T 3917.1-1997纺织品织物撕破性能第1部分:撕破强力的测定冲击摆锤法
- 玲龙医用诊断X 射线系统 XR 6000维修手册
- 残疾学生送教上门记录
评论
0/150
提交评论