版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.3 实际问题与二次函数,第2课时 二次函数与商品利润,3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 。当x= 时,y的最 值是 。 4. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 。当x= 时,函数有最 值,是 。 5.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 。,直线x=3,(3 ,5),3,小,5,直线x=-4,(-4 ,-1),-4,大,-1,直线x=2,(2 ,1),2,小,1,基础扫描,在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。,如果你去买商品,你会选买哪
2、一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?,问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元?,6000,(20+x),(300-10 x),(20+x)( 300-10 x),(20+x)( 300-10 x) =6090,自主探究,分析:没调价之前商场一周的利润为 元;,设销售单价上调了x元,那么每件商品的利润 可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 。,问题2.已知某商品的进价
3、为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?,合作交流,问题3.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,问题4.已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?,解:设每件涨价为x元时获得的总利润为y元.,y =(60
4、-40+x)(300-10 x) =(20+x)(300-10 x) =-10 x2+100 x+6000 =-10(x2-10 x ) +6000 =-10(x-5)2-25 +6000 =-10(x-5)2+6250,当x=5时,y的最大值是6250.,定价:60+5=65(元),(0 x30),怎样确定x的取值范围,解:设每件降价x元时的总利润为y元.,y=(60-40-x)(300+20 x) =(20-x)(300+20 x) =-20 x2+100 x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0 x20) 所以定价为60-2.5=57.5时利
5、润最大,最大值为6125元.,答:综合以上两种情况,定价为65元时可获得最大利润为6250元.,由(2)(3)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,怎样确定x的取值范围,(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.,解决这类题目的一般步骤,某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?,解:
6、设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x) =-20 x2+200 x+4000 =-20(x-5)2+4500 当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元,我来当老板,2.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件. (1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围; (2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入购进成本),解析:(1)降低x元后,所销售的件数是(500+100 x), y=100 x2+600 x+5500 (0 x11 ) (2)y=100 x2+600 x+5500 (0 x11 ) 配方得y=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息技术英语教学设计方案
- 第22课《梦回繁华》教学设计-2024-2025学年统编版语文八年级上册
- 更新担保合同
- 雨季防汛应急预案
- 办公设备租赁合同样本
- 政银担合作协议
- 网络与信息安全管理员(高级技师)资格理论考试题库大全(附答案)
- 工程履约担保合同模板
- 金融服务代理合同
- 保证人担保借款协议
- 2024-2030年中国天然乳胶床垫行业市场发展趋势与前景展望战略分析报告
- 公园广场保洁管理服务投标方案(技术方案)
- 2024年硕士研究生招生考试思想政治理论考试大纲
- 家居保洁课件
- 2023-2024学年北京市西城外国语学校七年级(上)期中数学试卷【含解析】
- 大视听产业发展系列报告一:2024年微短剧内容和营销研究报告-艾瑞咨询-202408
- 知识图谱智慧树知到答案2024年浙江大学
- 服务基层行治疗(3.5.4消毒与灭菌工作管理)
- 中国蚕丝绸文化智慧树知到答案2024年浙江大学
- 六年级上册数学说课稿-二方向与位置(二)第2课时《用方向和距离确定某个点的位置》
- 2024版软件服务采购合同
评论
0/150
提交评论