版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、章末归纳总结,指数函数、对数函数和简单的幂函数是重要的基本初等函数,是高中数学函数部分的主体内容,是历届高考的重点本章是在初中学习了整数指数幂及运算性质的基础上,引入了分数指数幂的概念,然后将分数指数幂推广到实数指数幂,进而研究指数、指数函数的概念及图象性质;对数运算、对数函数的概念及其图象和性质另外,函数的实际应用是新课标增添的内容但它的研究思想方法,一直是高中数学的重点及难点之一,也是高考中常见题型,函数建模时往往涉及很多因素,如果把涉及到的所有因素都考虑到,是不可能的,也没有必要,而且还会使问题复杂化而导致建模失败,要想把实际问题变为数学问题,需要对其进行必要的合理的简化和假设,梳理相应
2、的数学问题即提出问题,有了数学问题,就可以选择适当的数学工具并根据已有的知识和搜集到的信息来描述变量之间的关系,,本章第4节即用函数模型来描述,即函数建模,最后还需将模型的结果与研究的实际问题作比较,以检验所建模型及计算过程的合理性,如果检验结果不符合实际,应该修改、补充,通常一个模型可以经过多次反复修改才能得到满意的结果因此,函数建模的主要过程即为:,在学习本章时,要注意运用由特殊到一般,运用对比的方法,搞清几个意义相近概念的内涵,利用数形结合的思想方法来说明比较抽象的概念及性质在知识的发生、发展过程中提高运用知识解决问题的能力,专题一数形结合思想 数形结合是高中数学中的一种重要的数学思想方
3、法,这种思想方法体现在解题中,就是指在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决运用数形结合的思想方法解决问题时,一般要遵循等价性、双向性和简单性原则,例1方程log2(x4)3x解的个数是() A0个B1个C2个D3个 答案C 解析在同一坐标系中画出函数ylog2(x4)及y3x的图象,如图所示由图象可知,它们的图象有两个交点,故选C.,点评“数形结合”是根据数量与图形之间的关系,认识研究对象的数学特征,寻找解决问题方法的一种数学思想通常包括“以
4、数解形”和“以形助数”两方面 通过“以数解形”或“以形助数”,可以使复杂问题简单化,抽象问题具体化,数形结合兼数的严谨与形的直观之长,是优化解题过程的重要途径之一,是基本的数学方法,A(1,1) B(1,) C(,2)(0,) D(,1)(1,),答案D,解法二:数形结合方法 在同一直角坐标系中分别作f(x)及y31的图象 满足f(x0)1的x0的取值范围即为图象y1、y2在y31的图象上方的部分对应的x值的集合,观察图象,即得x01.故选D.,专题二分类讨论思想 分类讨论问题的实质是把整体问题代为部分来解决,化成部分从而增加题设条件,这是解分类讨论问题的指导思想 例2设a是实常数,求函数y4
5、x4x2a(2x2x)的最小值,并求相应的x值 分析将2x2x看作整体,问题转化为求二次函数在给定区间上的最值问题,点评当问题所给的对象不能进行统一的研究时,就需要对研究的对象进行分类,然后对每一类分别研究,得出一类的结果,最后综合各类的结果得到问题的解答这种解决问题的思想即分类讨论思想引起讨论的原因常见的有:问题涉及分类定义的概念,分类给出的性质,用分段函数表示的解析式,有范围或条件限制的定理、公式、法则,同一术语包含几种不同的情形、位置或形状不确定的图形等特别是问题涉及参数且对参数的不同取值有不同结果在进行分类时必须按照确定的分类标准,做到分类不重复又不遗漏,已知log2a3(14a)2,
6、求a的取值范围,专题三等价转化思想 数学问题中,已知条件是结论成立的保证,但有的问题已知条件和结论之间距离比较大,难于解出因此,如何将已知条件经过转化,逐步向需求结论靠拢,这就是解题过程中经常要做的工作,变更条件就是利用与原条件等价的条件去代替,使得原条件中的隐含因素显露出来,使各种关系明朗化,从而缩短已知条件和结论之间的距离,找出它们之间的内在联系,以便应用数学规律、方法将问题解决,例3已知三个集合,分别为Ax|x2axa2190,Bx|log2(x25x8)1,Cx|x22x80,求当a取什么实数时,AB与AC同时成立 分析转化条件AB与AC,将集合问题转化为方程解的问题,解析B2,3,C
7、2,4,要使AC成立,即2与4都不是方程x2axa2190的解要使AB,即3是方程x2axa2190的解,即32a3a2190,a5或a2. 当a5时,A2,3,不满足AC,故a5(舍去) 当a2时,A3,5适合题意,故a2为所求,点评集合关系之间有很多等价变换如“C(AB)CA且CB”,“BB”,“xABxA或xB”等等本题将集合的抽象语言等价转化为具体的易理解的语言,专题四函数与方程的思想 在解决数学问题时,对于一些从形式上看是以非方程的问题出现的,但经过一定的数学变换或构造,使这一非方程的问题转化为方程的形式,并运用方程的有关性质来处理这一问题,进而使原数学问题得到很好的解决这一思想方法
8、我们称之为“方程思想”,例4已知1xd,令a(logdx)2,blogdx2,clogd(logdx),则 () Aabc Bacb Ccba Dcab 分析将a、b化简变形,再比较大小,答案D 解析1xd,0logdx1. clogd(logdx)0. ab(logdx)2logdx2(logdx)22logdx logdx(logdx2)0 cab.选D.,点评(1)此题运用函数ylogdx及其复合函数的单调性,值域比较a、b、c的大小;(2)此题也可采用特殊值法,如取d4,x2,判断a、b、c大小,方程axx22(a0,a1)的解的个数为() A0 B1 C2 D无法判定 分析作出函数yax(a0,a1)与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冶金设备销售透视-揭秘年度销售与市场趋势
- 强电流架空电缆产业链招商引资的调研报告
- 人造灌木产业链招商引资的调研报告
- 债务清偿谈判服务行业市场调研分析报告
- 心理学研究行业经营分析报告
- 硬币包装纸项目运营指导方案
- 医疗设备维护服务行业营销策略方案
- 5G直播行业相关项目经营管理报告
- 冷链运输设备行业营销策略方案
- 双层床产业链招商引资的调研报告
- 中国吡唑醚菌酯行业市场现状调查及前景战略研判报告
- 住院医师规范化培训日常考核评分表
- 2024内蒙古事业单位联考招录(高频重点提升专题训练)共500题附带答案详解
- 《信息通信网络线务员》(综合布线装维员)理论考试题库大全-下(简答题)
- JGJ80-2016 建筑施工高处作业安全技术规范
- 构建水利安全生产风险管控六项机制工作指导手册2023版
- 工贸企业治本攻坚三年行动方案
- 2.1 充分发挥市场在资源配置中的决定性作用 课件-高中政治统编版必修二经济与社会
- 山东省淄博市临淄区2022-2023学年六年级上学期期中英语试卷
- 2024年中核武汉核电运行技术股份有限公司招聘笔试参考题库含答案解析
- 中医针灸培训资料课件
评论
0/150
提交评论