版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、21.2.2一元二次方程的解法 -公式法,对于方程,(2)方程两边同除以a,得.,(1)将常数项移到方程的左边,得.,(3)方程两边同时加上_,得,左边写成完全平方式,右边通分,得,(4)开平方,用配方法解,公式的推导很重要,a0, 4a20,当b24ac0时,,公式的推导很重要,特别提醒推导时必须写,一元二次方程,解的情况由,决定:,(1),当,时,,方程有两个不相等的实数根;,(2),当,时,,方程有两个相等的实数根;,(3),当,时,,方程没有实数根.,根的判别式,一元二次方程,的根由方程的系数a,b,c确定,将a,b,c代入式子,当,解一元二次方程时,可以先将方程化为一般形式,由求根公
2、式可知,一元二次方程最多有两个实数根,一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,,时,,例1.用公式法解方程2x2+5x-3=0 解: a=2, b=5, c= -3, b2-4ac=52-42(-3)=49,1、把方程化成一般形式。 并写出a,b,c的值。 2、求出b2-4ac的值。, x = = =,即 x1= - 3 ,用公式法解一元二次方程的一般步骤:,求根公式 : X=,4、写出方程的解: x1=?, x2=?,3、代入求根公式 : X= (a0, b2-4ac0),(a0, b2-4ac0),x2=,填空:用公式法解方程 3x2+5x-2=0,解:a= ,b=
3、,c = . b2-4ac= = . x= = . = . 即 x1 = , x2 = .,3,5,-2,52-43(-2),49,-2,求根公式 : X=,1.用公式法解下列方程: (1) x2 +2x =5,(a0, b2-4ac0),细心填一填:,做一做,例2 用公式法解方程: x2 x - =0,解:方程两边同乘以3, 得 2 x2 -3x-2=0,x=,即 x1=2, x2= -,例3 用公式法解方程: x2 +3 = 2 x,解:移项,得 x2 -2 x+3 = 0,a=1,b=-2 ,c=3,b2-4ac=(-2 )2-413=0,x=,x1 = x2 =,=,=,=,=,当 时
4、,一元二次方程有两个相等的实数根。,b2-4ac=0,a=2,b= -3,c= -2.,b2-4ac=(-3) 2-42(-2)=25.,2.用公式法解下列方程:,(4)4x2-3x+2=0,当 时,一元二次方程没有实数根。,b2-4ac0,解:去括号,化简为一般式:,例4 解方程:,这里,方程没有实数解。,用公式法解一元二次方程的一般步骤:,3、代入求根公式 :,2、求出 的值,,1、把方程化成一般形式,并写出 的值。,4、写出方程的解:,特别注意:当 时,方程无实数解;,3、练习:用公式法解方程: x2 - 2 x+2= 0.,1、方程3 x2 +1=2 x中, b2-4ac= . 2、若
5、关于x的方程x2-2nx+3n+4=0 有两个相等的实数根,则n= .,动手试一试吧!,0,-1或4,1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解,2、关于x的一元二次方程ax2+bx+c=0 (a0)。 当a,b,c 满足什么条件时,方程的两根为互为相反数?,本节课我有哪些收获?,我认为本节课的重点是什么?,想一想 记一记 问一问,我还有哪些疑点?,课下可要多交流呦!,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a0) 的根的判别式,通常用表示.,判别式定理,当b2-4ac0时,方程有两个不相等的实数根,当b2-4ac=0时,方程有两个相等的实数
6、根,当b2-4ac0时,方程没有实数根,当b2-4ac0时,方程有两个实数根,若方程有两个 不相等的实数根,则b2-4ac0,判别式逆定理,若方程有两个 相等的实数根,则b2-4ac=0,若方程没有实数根,则b2-4ac0,若方程有两个 实数根,则b2-4ac0,即一元二次方程:,当 时,方程有两个不相等的实数根;,当 时,方程有两个相等的实数根;,当 时,方程没有实数根。,当方程有两个相等的实数根, ;,当方程没有实数根, 。,记住了,别忘了!,一元二次方程根的判别式,要点、考点,1.一元二次方程ax2+bx+c=0(a0)根的情况: (1)当0时,方程有两个不相等的实数根; (2)当=0时
7、,方程有两个相等的实数根; (3)当0时,方程无实数根. (4)当0时,方程有两个实数根,2.根据根的情况,也可以逆推出的情况,这方面 的知识主要用来求字母取值范围等问题.,1.求判别式时,应该先将方程化为一般形式. 2.应用判别式解决有关问题时,前提条件为 “方程是一元二次方程”,即二次项系数不为0.,应用1. 不解方程判断方程根的情况:,(1) x2-2kx+4(k-1)=0 (k为常数),(2) x2-(2+m)x+2m-1=0 (m为常数),=4( k2-4k+4) =4( k-2) 2,解:=4 k2-16k+16, 0方程有两个不等实根,解:=m2-4m+8,=m2-4m+4+4
8、=(m-2) 2 +4, 0方程有实根,含有字母系数时,将配方后判断,根的判别式问题,1、不解方程,判断根的情况.,(1)2x2-4x-5=0;,(2)x2-(m+1)x+m=0.,=56,0,方程有两个不相等的实数根;,当m-1=0时,,0,方程有两个相等的实数根;,方程有两个不相等的实数根;,当m-10时,,解:,解:,(1)、若关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,则m的取值范围是 ( ) A 、 m 0 B 、 m 0 C 、 m 0 且m1 D m 0且m1,解:由题意,得 m-10 =(2m)2-4(m-1)m0 解之得,m0且m1,故应选D,D,应用2:
9、根据方程根的情况判断某一字母取值范围,(3) m为何值时,关于x的一元二次方程,m2x2+(2m+1)x+1=0有两个不等实根?,解:=(2m+1)2-4m2,=4m+1,若方程有两个不等实根,则 0,4m+1 0,m -1/4,对吗?,m - 1/4 且m0,注意二次项系数,2、根据方程根的情况,确定待定系数的取值范围.,例: k取何值时一元二次方程kx2-2x+3=0有实数根.,根的判别式问题,解:,一元二次方程kx2-2x+3=0有实数根.,k0,,又,= 4-12k,4-12k 0,,解得,当,方程有实数根.,且,k0 时,,问题三 求证:不论m取何值,关于x的一元二次方程9x2-(m
10、+7)x+m-3=0都有两个不相等的实数根,证明:=-(m+7)2-49(m-3) =m2+14m+49-36m+108 =m2-22m+157,=(m-11)2+36,不论m取何值,均有(m-11)20 (m-11)2+360,即0 不论m取何值,方程都有两个不相等的实数根,小结:将根的判别式化为一个非负数与一个正数的和的形式,3、证明字母系数方程有实数根或无实数根,例:求证方程2x2-(m+5)x+m+1=0有两个不相等的实数根.,把判别式配方,根的判别式问题,解:,0,方程有两个不相等的实数根;,问题四:解含有字母系数的方程。,解:,当a=0时,-5x+1=0 x=1.,当a0时,方程为
11、一元二次方程.,相信自己一定行!,(2008年北京市)已知 :关于,的一元二次方程,(1)求证:方程有两个不相等的实数根;,课堂达标检测,【例5】 已知:a、b、c是ABC的三边,若方程 有两个等根,试判断ABC的形状.,解:利用 0,得出a=b=c. ABC为等边三角形.,典型例题解析,例6.一元二次方程 有两个实数根,则m的取值范围是 _,变,抢答:,2、选择题(请用最快的速度,把“有两个实数根”的方程和“没有实数根”的方程的序号选入相应的括号内) (1) (2) (3) (4) (5) (6),有两个实数根的方程的序号是( ) 没有实数根的方程的序号是( ),任何一个一元二次方程或者有两
12、个实数根或者没有实数根,a、c异号,一元二次方程有两个不相等的实数根,求根公式 : X=,一、由配方法解一般的一元二次方程 ax2+bx+c=0 (a0) 若 b2-4ac0得,这是收获的 时刻,让我 们共享学习 的成果,小结:,这是收获的 时刻,让我 们共享学习 的成果,二、用公式法解一元二次方程的一般步骤:,1、把方程化成一般形式。 并写出a,b,c的值。 2、求出b2-4ac的值。 3、代入求根公式 :,X=,(a0, b2-4ac0),4、写出方程的解: x1=?, x2=?,这是收获的 时刻,让我 们共享学习 的成果,四、计算一定要细心,尤其是计算b2-4ac的值和代入公式时,符号不
13、要弄错。,三、当 b2-4ac=0时,一元二次 方程有两个相等的实数根。,当 b2-4ac0时,一元二次 方程有两个不相等的实数根。,当 b2-4ac0时,一元二次 方程没有实数根。,1、一元二次方程的一般形式是什么? 2、解一元二次方程有哪四种方法?,知识回顾,凡形如 ax2+c=0 (a0, ac0) 或 a(x+p)2+q=0 (a0, aq0) 的一元二次方程都可用直接开平方法解.,配方法、公式法适用于所有一元二次方程; 先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解. 公式法是解一元二次方程的通法.,解一元二次方
14、程的方法有哪几种?根据你学习的体会,谈谈通常你是如何选择解法的,并与同学交流.,公式法是解一元二次方程的通法.,配方法、公式法适用于所有一元二次方程;,因式分解法适用于某些一元二次方程,开平方法适用于缺项的一元二次方程;,课时训练,1.一元二次方程x2+2x+4=0的根的情况 是 ( ) A.有一个实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.没有实数根,D,2.方程x2-3x+1=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 没有实数根 D.只有一个实数根,A,3.下列一元一次方程中,有实数根的是 ( ) A.x2-x+1=0 B.x2-2x+3=0 C.x2+x-1=0 D.x2+4=0,C,4.关于x的方程k2x2+(2k-1)x+1=0有实数根,则下列结论正确的是 ( ) A.当k=1/2时,方程两根互为相反数 B.当k=0时,方程的根是x=-1 C.当k=1时,方程两根互为倒数 D.当k1/4时,方程有实数根,D,课时训练,5.若关于x的一元二次方程mx2-2x+1=0有实数根,则m的取值范围是 ( ) A.m1 B. m1且m0 C.m1 D. m1且m0,D,7.若关于x的方程x2+(2k-1)x+k2-7/4=0 有两个相等的实数根,则k= .,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年银川客运资格证考试答题
- 吉首大学《教学技能训练2》2021-2022学年第一学期期末试卷
- 吉首大学《传感器原理及应用》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷25
- 吉林艺术学院《音乐创作软件基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《三维设计基础与应用》2021-2022学年第一学期期末试卷
- 2024年共同合作农产品协议书模板
- 2024年供货合同范本21篇范文
- 2024年大宗交易互赔协议书模板
- 吉林师范大学《新闻伦理与法规》2021-2022学年第一学期期末试卷
- 第四届全国供销合作总社职业技能竞赛(调饮师)备赛试题库(含答案)
- 用所给词的适当形式填空(专项训练)人教PEP版英语六年级上册
- 2024年中国远洋海运集团限公司招聘(高频重点提升专题训练)共500题附带答案详解
- DL∕T 1215.4-2013 链式静止同步补偿器 第4部分现场试验
- 2024(新高考2卷)英语试题详解解析 课件
- 续家谱跋的范文
- 2024彩票店转让合同范本
- 光缆迁改合同范本
- 仓储管理员劳动合同范本
- 维护维修方案标书(2篇)
- 预防及控制养老机构院内感染-院内感染基本知识
评论
0/150
提交评论