Chapter 10 Sinusoidal steady-state analysis.ppt_第1页
Chapter 10 Sinusoidal steady-state analysis.ppt_第2页
Chapter 10 Sinusoidal steady-state analysis.ppt_第3页
Chapter 10 Sinusoidal steady-state analysis.ppt_第4页
Chapter 10 Sinusoidal steady-state analysis.ppt_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Chapter 10Sinusoidal Steady-state Analysis,要求深刻理解与熟练掌握的重点内容有: 正弦稳态电路的分析。 难点:相量图表示、提高功率因数、功率分析,10-1 Introduction,10-2 Nodal Analysis,10-3 Mesh Analysis,10-4 Superposition Theorem,10-5 Source Transformation,10-6 Thevenin and Norton Equivalent Circuits,10-7 Op Amp AC Circuits,10-10 Summary and Review,1

2、0.1 Introduction,Steps to Analyze ac Circuits:,Transform the circuit to the phasor or frequency domain. Solve the problem using circuit techniques (nodal analysis, mesh analysis, superposition, etc.). Transform the resulting phasor to the time domain.,oscillator 振荡器,transistor 晶体管,Capacitance multip

3、lier 电容倍增器,10.2 Nodal Analysis,The basis of nodal analysis is Kirchhoffs current law. Since KCL is valid for phasors, as demonstrated in Section 9.6 , we can analyze ac circuits by nodal analysis.,DC Circuit,AC Circuit,Example: Find the time-domain node voltages v1 (t) and v2(t) in the circuit shown

4、 in Fig. a.,A frequency-domain circuit for which node voltages V1 and V2 are identified.,Fig. a,.,.,Solution:,left node :,right node:,Combining terms, we have:,Solving, we find that V1 = 2.24 -63.4o V, V2 = 47.47 116.6o V,Converting to the time domain :,v1(t) = 2.24*1.414 cos ( t 63.4o) V v2(t) = 47

5、.7 *1.414 cos ( t + 116.6o) V,.,.,Note that the value of would have to be known in order to compute the impedance values given on the circuit diagram. Also, both sources must be operating at the same frequency.,20cos4t V,10,ix,0.1F,1H,2ix,0.5H,Example: Find ix in the circuit of Fig.10.1 using nodal

6、analysis.,We first convert the circuit to the frequency domain:,20cos4t,Solution:,Node 1,Node 2,The equations can be put in matrix form as,Transforming this to the time domain,10.3 Mesh analysis,Kirchhoffs voltage law (KVL) forms the basis of mesh analysis. The validity of KVL for ac circuits was sh

7、own in section 9.6 and is illustrated in the following examples.,Mesh-Current,DC Circuit,AC Circuit,Example :Use phasors and mesh analysis on the circuit of Fig. 10.63 to find .,Solution:,Example :Use phasor analysis to determine the three mesh currents i1(t), i2(t), and i3(t) in the circuit of Fig.

8、 10.70,Solution:,We define an additional clockwise mesh current i4(t) flowing in the upper right-hand mesh.,The inductor is replaced by a j0.004 W impedance :,The 750 mF capacitor is replaced by a j/ 0.0015 W impedance,The 1000 mF capacitor is replaced by a j/ 2 W impedance.,And ZR =1 W,We replace t

9、he left voltage source with a 6 -13o V source, and the right voltage source with a 6 0o V source.,Thus ,Mesh-Current equation is,(1 j/ 0.0015) I1 ( j/ 0.0015 )I2 I3 +0 = 6 -13o 1,j/ 0.0015 I1 + j0.004 I2 j0.004 I4 = 0.005 I1 2,-I1 + (1 j/ 2) I3 + j0.5 I4 = -6 0o 3,-j0.004 I2 + j0.5 I3 + (j0.004 j0.5

10、) I4 = 0 4,Solving, we find that I1 = 0.00144 -51.5o A, I2 = 233.6 39.65o A, and I3 = 6.64 173.5o A,Converting to the time domain,i1(t) = 1.44 cos (2t 51.5o) mA i2(t) = 233.6 cos (2t + 39.65o) A i3(t) = 6.64 cos (2t + 173.5o) A,10.4 Superposition theorem,When a circuit has sources operating at diffe

11、rent frequencies, one must add the responses due to the individual frequencies in the time domain.,Example: Find v0 in the circuit in Fig.10.13 using the superposition theorem.,We let v0=v1+v2+v3,where v1 is due to the 5V dc voltage source, v2 is due to the 10cos2t V voltage source, and v3 is due to

12、 the 2sin5t A current source.,Solution:,To find v1, we set to zero all sources except the 5V dc source. The equivalent circuit is as shown in Fig.10.14(a).,v1=-1V,To find v2, we set to zero both the 5V source and the 2sin5t current source and transform the circuit to the frequency domain.,In the tim

13、e domain,To obtain v3, we set the voltage sources to zero and transform the circuit to the frequency domain.,By current division,In the time domain,10.5 Source transformation,10.6 Thevenin and Norton equivalent circuits,Thevenins and Nortons theorems are applied to ac circuits in the same way as the

14、y are to dc circuits. The only additional effort arises from the need to manipulate complex numbers.,1,1,ZTh,+ _,1,1,Linear circuit,The frequency-domain version of a Thevenin equivalent circuit is depicted in Fig.(a), where a linear circuit is replaced by a voltage source in series with an impedance

15、.,The frequency-domain version of a Norton equivalent circuit is depicted in Fig.(b), where a linear circuit is replaced by a current source in parallel with an impedance.,1,1,Linear circuit,Example: Find the Thevenin equivalent of the circuit in Fig.10.25 as seen from terminals a-b.,1. To find ,we

16、apply KCL at node 1 ,1,+ _,Solution:,Thus , the Thevenin voltage is,2. Find ZTh.,3. The Thevenin equivalent of the circuit.,ZTh,+ _,a,b,10.7 Op amp ac circuits,As usual, we will assume ideal op amps.,As discussed in Chapter 5, the key to analyzing op amp circuits is to keep two important properties of an ideal op amp in mind :,No current enters either of its input terminals. The voltage across its input terminals is zero.,Example: Determine v0(t) for the op amp circuit in Fig.10.31(a) if vS=3cos1000t V.,V0,We first transform the circuit to the frequency domain, as shown in Fig.(b), wh

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论