




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2 用配方法求解一元二次方程,第二章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第2课时 配方法(2),1.会用配方法解二次项系数不为1的一元二次方程;.(重点) 2.能够熟练地、灵活地应用配方法解一元二次方程.(难点),学习目标,导入新课,复习引入,(1) 9x2=1 ;,(2) (x-2)2=2.,2.下列方程能用直接开平方法来解吗?,1.用直接开平方法解下列方程:,(1) x2+6x+9 =5;,(2)x2+6x+4=0.,把两题转化成(x+n)2=p(p0)的 形式,再利用开平方,问题1:观察下面两个是一元二次方程的联系和区别: x2 + 6x + 8 = 0 ; 3x
2、2 +8x3 = 0.,问题2:用配方法来解 x2 + 6x + 8 = 0 .,解:移项,得 x2 + 6x = -8 , 配方,得 (x + 3)2 = 1. 开平方, 得 x + 3 = 1. 解得 x1 = -2 , x2= -4.,想一想怎么来解3x2 +8x3 = 0.,讲授新课,试一试:解方程: 3x2 + 8x -3 = 0. 解:两边同除以3,得 x2 + x - 1=0. 配方,得 x2 + x + ( ) 2 - ( )2 - 1 = 0, (x + )2 - =0. 移项,得 x + = , 即 x + = 或 x + = . 所以 x1= , x2 = -3 .,配方
3、,得,由此可得,二次项系数化为1,得,解:移项,得,2x23x=1,即,移项和二次项系数化为1这两个步骤能不能交换一下呢?,例1 解下列方程:,配方,得,因为实数的平方不会是负数,所以x取任何实数时,上式都不成立,所以原方程无实数根,解:移项,得,二次项系数化为1,得,为什么方程两边都加12?,即,思考1:用配方法解一元二次方程时,移项时要 注意些什么?,思考2:用配方法解一元二次方程的一般步骤.,移项时需注意改变符号.,移项,二次项系数化为1; 左边配成完全平方式; 左边写成完全平方形式; 降次; 解一次方程.,一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.,当p0时,则 ,
4、方程的两个根为 当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为 x1=x2=-n. 当p0时,则方程(x+n)2=p无实数根.,规律总结,引例:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h (m)与时间 t (s)满足关系: h=15t - 5t2. 小球何时能达到10m高?,解:将 h = 10代入方程式中. 15t - 5t2 =10. 两边同时除以-5,得 t2 - 3t = -2, 配方,得 t2 - 3t + ( )2= ( )2 - 2, (t - )2 =,移项,得 (t - )2 = 即 t - = ,或 t - = . 所以 t1=
5、2 , t2 = 1 .,即在1s或2s时,小球可达10m高.,例2.试用配方法说明:不论k取何实数,多项式 k24k5 的值必定大于零.,解:k24k5=k24k41,=(k2)21,因为(k2)20,所以(k2)211.,所以k24k5的值必定大于零.,例3.若a,b,c为ABC的三边长,且 试判断ABC的形状.,解:对原式配方,得,由代数式的性质可知,所以,ABC为直角三角形.,1. 方程2x2 - 3m - x +m2 +2=0有一根为x = 0,则 m的值为( ) A. 1 B.1 C.1或2 D.1或-2 2.应用配方法求最值. (1) 2x2 - 4x+5的最小值; (2) -3
6、x2 + 5x +1的最大值.,练一练,C,解:原式 = 2(x - 1)2 +3 当x =1时有最小值3,解:原式= -3(x - 2)2 - 4 当x =2时有最大值-4,归纳总结,配方法的应用,1.求最值或 证明代数式 的值为恒正 (或负),对于一个关于x的二次多项式通过配方成a(x+m)2 n的形式后,(x+m)20,n为常数,当a0时,可知其最小值;当a0时,可知其最大值.,2.完全平方式中的配方,如:已知x22mx16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=4.,3.利用配方构成非负数和的形式,对于含有多个未知数的二次式的等式,求未知数的值,解题突破口
7、往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2b24b4=0,则a2(b2)2=0,即a=0,b=2.,例4.读诗词解题: (通过列方程,算出周瑜去世时的年龄.) 大江东去浪淘尽, 千古风流数人物。 而立之年督东吴, 早逝英年两位数。 十位恰小个位三, 个位平方与寿符。 哪位学子算得快, 多少年华属周瑜?,解:设个位数字为x,十位数字为(x-3),x1=6, x2=5,x2-11x=-30,x2-11x+5.52=-30+5.52,(x-5.5)2=0.25,x-5.5=0.5,或x-5.5=-0.5,x2=10(x-3)+x,这个两位数为36或25
8、,,周瑜去世的年龄为36岁.,周瑜30岁还攻打过东吴,,1.解下列方程:,(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12; (3)4x2-6x-3=0; (4) 3x2+6x-9=0.,解:x2+2x+2=0,,(x+1)2=-1.,此方程无解;,解:x2-4x-12=0,,(x-2)2=16.,x1=6,x2=-2;,解:x2+2x-3=0,,(x+1)2=4.,x1=-3,x2=1.,当堂练习,2.利用配方法证明:不论x取何值,代数式x2x1的值总是负数,并求出它的最大值.,解:x2x1=(x2+x+ )+ 1,所以x2x1的值必定小于零.,当 时,x2x1有最大值,3.若 ,求(xy)z 的值.,解:对原式配方,得,由代数式的性质可知,4.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?,解:设道路的宽为xm, 根据题意得,(35-x)(26-x)=850,,整理得,x2-61x+60=0.,解得,x1=60(不合题意,舍去), x2=1.,答:道路的宽为1m.,5.已知a,b,c为ABC的三边长,且 试判断ABC的形状.,解:对原式配方,得,由代数式的性质可知,所以,ABC为等边三角形.,课堂小结,配方法,方法,步骤,一移常数项; 二配
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 录像行业市场潜力分析-全面剖析
- 客户体验提升路径-全面剖析
- 烟草制品业数字化战略布局-全面剖析
- 智能传感器在制造流程中的集成应用-全面剖析
- 正规扶梯施工方案
- AI辅助审计技术应用-全面剖析
- 板材制造中的柔性生产线设计-全面剖析
- 混凝土喷漆施工方案
- 主动运输调控机制创新-全面剖析
- 智能摩托车故障诊断系统-全面剖析
- GB/T 17879-1999齿轮磨削后表面回火的浸蚀检验
- GA 61-2010固定灭火系统驱动、控制装置通用技术条件
- 简明大学物理电子版
- 脊柱弯曲异常筛查结果记录表
- 公路工程结算表
- 举升机每日维护检查表
- 质量目标及计划分解表
- 《信息化教学评价》
- 蹲踞式跳远教案
- 三相异步电动机的速度控制
- 供电所线损的基本概念和管理
评论
0/150
提交评论