



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十六周 乘法和加法原理专题简析:在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。例题1:由数字0,1,2,3组成三位数,问:可组成多少个不相等的三位数?可组成多少个没有重复数字的三位数?在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成344=48个不相等的三位数。要求组
2、成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成332=18个没有重复数字的三位数。练习1:1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?3、由数字1,2,3,4,5,6,7,8,可组成多少个:三位数;三位偶数;没有重复数字的三位偶数;百位是8的没有重复数字的三位数;百位是8的 没有重复数字的三位偶数。例题2:有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面
3、数字之和为偶数的有多少种情形?要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:两个正方体向上一面同为奇数的共有33=9(种)不同的情形;两个正方体向上一面同为偶数的共有33=9(种)不同的情形;两个正方体向上一面同为偶数的共有33+33=18(种)不同的情形。练习2:1、在11000的自然数中,一共有多少个数字1?2、在1500的自然数中,不含数字0和1的数有多少个?3、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?4、由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?例题3:书架上层
4、有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算65=30(种),有30种不同的取法。练习3:1、商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?2、小明家到学校共有5条路可走,从学校到少年宫共有3条路可走。小明从家出发,经过学校然后到少年宫,共有多少种不同的走法?3、张师傅到食堂吃饭,主食有2
5、种,副食有6种,主、副食各选一种,他有几种不同的选法?例题4:在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?从五个数字中选出四个数字,即五个数字中要去掉一个数字,由于原来五个数字相加的和除以3余2,所以去掉的数字只能是3或9。去掉的数字为3时,即选2,5,7,9四个数字,能排出4321=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)练习4:1、在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?2、在1,2,3,4,5这五个数字中,选出四个数
6、字组成能被3整除的四位数,这样的四位数有多少个?3、在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?例题5:从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),小明从学校出发到少年宫(只许向东或向南行进),最后有多少种走法?为了方便解答,把图中各点用字母表示如图。根据小明步行规则,显然可知由A到T通过AC边上的各点和AN边上的各点只有一条路线,通过E点有两条路线(即从B点、D点来各一条路线),通过H点有3条路线(即从E点来有二条路线,从G点来有一条路线),这样推断可知通过任何一个交叉点的路线总数等于通过该点左边、上方的两邻接交叉点的路线的总和
7、,因此,可求得通过S点有4条路线,通过F点有3条路线由此可见,由A点通过T点有10条不同的路线,所以小明从学校到少年宫最多有10种走法。练习5:1、从学校到图书馆有5条东西的马路和5条南北的马路相通(如图)。李菊从学校出发步行到图书馆(只许向东或向南行进),最多有多少种走法?2、某区的街道非常整齐(如图),从西南角A处走到东北角B处,要求走最近的路,一共有多少种不同的走法?3、如图有6个点,9条线段,一只小虫从A点出发,要沿着某几条线段爬到F点。行进中,同一个点或同一条线段只能经过一次,这只小虫最多有多少种不同的走法?答案:练11、 3543180个2、 909810个3、 888512个 488256个 476168个 17642个 13618个练21、 9180+3192个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津商务职业学院全国招聘真题2024
- 陕西君盛资产运营有限公司招聘真题2024
- 环境、社会与治理(ESG)指标分析-全面剖析
- 金华义乌市中心医院招聘真题2024
- 河北医科大学第二医院招聘真题2024
- 2025年护士执业资格考试题库(精神科护理学专项)护理管理历年真题案例分析
- 2025-2030全球及中国疏浚服务行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国牵引式休旅车行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 马术赛事志愿者管理体系构建论文
- 2025年统计学期末考试题库:统计软件应用深度学习支持向量机分析试题
- 卫生法(教学讲解课件)
- 高三冲刺100天励志主题班会课件
- 全国工业产品生产许可证申请书
- 德能勤绩廉个人总结的
- 中层干部岗位竞聘报名表格评分表格评分标准
- 思想道德与法治课件:第六章 第一节 社会主义法律的特征和运行
- 有限空间作业及应急物资清单
- 《个人信息保护法》解读
- GB∕T 3216-2016 回转动力泵 水力性能验收试验 1级、2级和3级
- 新疆高速公路建设工程季节性施工方案
- 新版(七步法案例)PFMEA
评论
0/150
提交评论