人教版八年级数学上册 期末试卷(2)_第1页
人教版八年级数学上册 期末试卷(2)_第2页
人教版八年级数学上册 期末试卷(2)_第3页
人教版八年级数学上册 期末试卷(2)_第4页
人教版八年级数学上册 期末试卷(2)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教版八年级数学上册期末试卷(人教版八年级数学上册期末试卷(2 2) 一、选择题(本题有一、选择题(本题有 1010 小题,每小题小题,每小题 4 4 分,共分,共 4040 分,请选出各题中一个符合分,请选出各题中一个符合 题意的正确选项,不选、多选、错选,均不给分)题意的正确选项,不选、多选、错选,均不给分) 1 (4 分)将下列四种长度的三根木棒首尾顺次连接,能组成三角形的是() A2,5,8 B3,4,5 C2,2,4 D1,2,3 2 (4 分)下列图形是对圆的面积进行四等分的几种作图,则它们是轴对称图形 的个数为() A1B2C3D4 3 (4 分)下列运算中,正确的是() A (

2、a2)3=a5Ba2a 4=a6 C3a22a=a D (2a)2=2a2 的值是零,则 x 的值是() C2Dx=3 4 (4 分)若分式 Ax=2Bx=3 5 (4 分)长方形的面积为 x22xy+x,其中一边长是 x,则另一边长是() Ax2yBx+2yCx2y1Dx2y+1 6 (4 分)如图,E,B,F,C 四点在一条直线上,EB=CF,A=D,再添一个 条件仍不能证明ABCDEF 的是() AAB=DEBDFAC CE=ABCDABDE 7 (4 分)如图所示,AOP=BOP=15,PCOA,PDOA,若 PC=4,则 PD 等于() A4B3C2D1 8 (4 分)如图(1) ,

3、是一个长为 2a 宽为 2b(ab)的矩形,用剪刀沿矩形的 两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正 方形,则中间空白部分的面积是() AabB (a+b)2C (ab)2Da2b2 9 (4 分)“五水共治”工程中,要挖掘一段 a 千米的排污管沟,如果由10 个工人 挖掘,要用m 天完成;如果由一台挖掘机工作,要比10 个工人挖掘提前 3 天完 成,一台挖掘机的工作效率是一个工人工作效率的() ABCD 10 (4 分)在平面直角坐标系 xOy 中,对于点 P(x,y) ,我们把点 P1(y+1, x+1)叫做点 P 的伴随点,已知点 A1的伴随点为 A2,点

4、A2的伴随点为 A3,点 A3 的伴随点为 A4,这样依次得到点 A1,A2,A3,An,若点 A1的坐标为(3, 1) ,则点 A2015的坐标为() A (0,4) B (3,1)C (0,2)D (3,1) 二、填空题(本题有二、填空题(本题有 6 6 小题,每小题小题,每小题 5 5 分,共分,共 3030 分分 11 (5 分)点 A(3,2)关于 x 轴的对称点 A的坐标为 12 (5 分)因式分解:x24y2= 13 (5 分)等腰三角形一边等于 4,另一边等于 2,则周长是 14 (5 分)若 ab=5,ab=3,则 a2+b2= 15 (5 分)当三角形中一个内角 是另一个内

5、角 的两倍时,我们称此三角形 为“特征三角形”,其中 称为“特征角”如果一个直角三角形为“特征三角形”, 那么它的“特征角”等于度 16 (5 分)如图,把面积为 1 的等边ABC 的三边分别向外延长 m 倍,得到 A1B1C1,那么A1B1C1的面积是(用含 m 的式子表示) 三、解答题(本题有三、解答题(本题有 8 8 小题,第小题,第 17201720 题每题题每题 8 8 分,第分,第 2121 题题 1010 分,第分,第 2222、2323 题每题题每题 1212 分,第分,第 2424 题题 1414 分,共分,共 8080 分分 17 (4 分)分解因式:4xy2+4x2y+y

6、3 18 (4 分)解方程: 19 (8 分)先化简再求值: ( ),其中 x=3 20 (8 分)在ABC 中,D 是 BC 边上的中点,F、E 分别是 AD 及其延长线上的 点,CFBE求证:CF=BE 21 (8 分)一个等腰直角三角板如图搁置在两柜之间,且点 D,C,E 在同一直 线上,已知稍高的柜高 AD 为 80cm,两柜距离 DE 为 140cm求稍矮的柜高 BE 22 (10 分)某校为了丰富学生的校园生活,准备购进一批篮球和足球其中篮 球的单价比足球的单价多 40 元, 用 1500 元购进的篮球个数与 900 元购进的足球 个数相等 (1)篮球和足球的单价各是多少元? (2

7、)该校打算用 800 元购买篮球和足球,恰好用完 800 元,问有哪几种购买方 案? 23 (12 分)探究题: (1)都相等,都相等的多边形叫做正多边形; (2)如图,格点长方形MNPQ 的各点分布在边长均为 1 的等边三角形组成的网 格上,请在格点长方形 MNPQ 内画出一个面积最大的格点正六边形 ABCDEF,并 简要说明它是正六边形的理由; (3)正六边形有条对角线,它的外角和为度 24 (12 分)阅读理解: (请仔细阅读,认真思考,灵活应用) 【例】已知实数 x 满足 x+=4,求分式的值 的倒数的值,解:观察所求式子的特征,因为 x0,我们可以先求出 因为 所以 =x+3+=x+

8、3=4+3=7 = 【活学活用】 (1)已知实数 a 满足 a+=5,求分式 (2)已知实数 x 满足 x+=9,求分式 的值; 的值 25 (14 分)有公共顶点 A 的ABD,ACE 都是的等边三角形 (1)如图 1,将ACE 绕顶点 A 旋转,当 E,C,B 共线时,求BCD 的度数; (2)如图 2,将ACE 绕顶点 A 旋转,当ACD=90时,延长 EC 角 BD 于 F, 求证:DCF=BEF; 写出线段 BF 与 DF 的数量关系,并说明理由 参考答案与试题解析参考答案与试题解析 一、选择题(本题有一、选择题(本题有 1010 小题,每小题小题,每小题 4 4 分,共分,共 40

9、40 分,请选出各题中一个符合分,请选出各题中一个符合 题意的正确选项,不选、多选、错选,均不给分)题意的正确选项,不选、多选、错选,均不给分) 1 (4 分)将下列四种长度的三根木棒首尾顺次连接,能组成三角形的是() A2,5,8 B3,4,5 C2,2,4 D1,2,3 【考点】三角形三边关系 【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可 【解答】解:A、2+58,不能组成三角形,故此选项错误; B、3+45,能组成三角形,故此选项正确; C、2+2=4,不能组成三角形,故此选项错误; D、1+2=3,不能组成三角形,故此选项错误; 故选:B 【点评】 此题主要考查

10、了三角形的三边关系定理,在运用三角形三边关系判定三 条线段能否构成三角形时并不一定要列出三个不等式, 只要两条较短的线段长度 之和大于第三条线段的长度即可判定这三条线段能构成一个三角形 2 (4 分)下列图形是对圆的面积进行四等分的几种作图,则它们是轴对称图形 的个数为() A1B2C3D4 【考点】轴对称图形 【分析】根据轴对称图形的概念求解即可 【解答】解:第一个图形是轴对称图形; 第二个图形是轴对称图形; 第三个图形不是轴对称图形; 第四个图形是轴对称图形; 所以一共有三个轴对称图形 故选 C 【点评】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形 两部分折叠后可重合 3

11、(4 分)下列运算中,正确的是() A (a2)3=a5Ba2a 4=a6 C3a22a=a D (2a)2=2a2 【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方 【专题】计算题;整式 【分析】A、原式利用幂的乘方运算法则计算得到结果,即可作出判断; B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断; C、原式利用单项式除以单项式法则计算得到结果,即可作出判断; D、原式利用积的乘方运算法则计算得到结果,即可作出判断 【解答】解:A、原式=a6,错误; B、原式=a6,正确; C、原式=a,错误; D、原式=4a2,错误, 故选 B 【点评】此题考查了整式的除法,同底数幂的乘

12、法,以及幂的乘方与积的乘方, 熟练掌握运算法则是解本题的关键 4 (4 分)若分式 Ax=2Bx=3 的值是零,则 x 的值是() C2Dx=3 【考点】分式的值为零的条件 【分析】直接利用分式的值为 0,则分子为 0,进而得出答案 【解答】解:分式 x+2=0, 的值是零, 解得:x=2 故选:A 【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键 5 (4 分)长方形的面积为 x22xy+x,其中一边长是 x,则另一边长是() Ax2yBx+2yCx2y1Dx2y+1 【考点】整式的除法 【专题】计算题;整式 【分析】根据面积除以一边长得到另一边长即可 【解答】解:根据题意得

13、: (x22xy+x)x=x2y+1, 故选 D 【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键 6 (4 分)如图,E,B,F,C 四点在一条直线上,EB=CF,A=D,再添一个 条件仍不能证明ABCDEF 的是() AAB=DEBDFAC CE=ABCDABDE 【考点】全等三角形的判定 【分析】由 EB=CF,可得出 EF=BC,又有A=D,本题具备了一组边、一组角 对应相等,为了再添一个条件仍不能证明 ABCDEF,那么添加的条件与原 来的条件可形成 SSA,就不能证明ABCDEF 了 【解答】解:A、添加 DE=AB 与原条件满足 SSA,不能证明ABCDEF,故 A

14、选项正确 B、添加DFAC,可得DFE=ACB,根据AAS 能证明ABCDEF,故B 选项 错误 C、添加E=ABC,根据 AAS 能证明ABCDEF,故 C 选项错误 D、添加 ABDE,可得E=ABC,根据 AAS 能证明ABCDEF,故 D 选项 错误 故选:A 【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有: SSS、SAS、ASA、AAS、HL 注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边 的参与,若有两边一角对应相等时,角必须是两边的夹角 7 (4 分)如图所示,AOP=BOP=15,PCOA,PDOA,若 PC=4,则 PD

15、等于() A4B3C2D1 【考点】菱形的判定与性质;含 30 度角的直角三角形 【专题】几何图形问题 【分析】过点 P 做 PMCO 交 AO 于 M,可得CPO=POD,再结合题目推出四 边形 COMP 为菱形,即可得 PM=4,又由 COPM 可得PMD=30,由直角三角 形性质即可得 PD 【解答】解:如图:过点 P 做 PMCO 交 AO 于 M,PMCO CPO=POD,AOP=BOP=15,PCOA 四边形 COMP 为菱形,PM=4 PMCOPMD=AOP+BOP=30, 又PDOA PD=PC=2 令解:作 CNOA CN=OC=2, 又CNO=PDO, CNPD, PCOD

16、 , 四边形 CNDP 是长方形, PD=CN=2 故选:C 【点评】本题运用了平行线和直角三角形的性质,并且需通过辅助线求解,难度 中等偏上 8 (4 分)如图(1) ,是一个长为 2a 宽为 2b(ab)的矩形,用剪刀沿矩形的 两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正 方形,则中间空白部分的面积是() AabB (a+b)2C (ab)2Da2b2 【考点】完全平方公式的几何背景 【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方 形的面积矩形的面积即可得出答案 【解答】解:由题意可得,正方形的边长为(a+b) , 故正方形的面积为(a+b

17、)2, 又原矩形的面积为 4ab, 中间空的部分的面积=(a+b)24ab=(ab)2 故选 C 【点评】 此题考查了完全平方公式的几何背景, 求出正方形的边长是解答本题的 关键,难度一般 9 (4 分) “五水共治”工程中,要挖掘一段 a 千米的排污管沟,如果由 10 个工 人挖掘,要用m 天完成;如果由一台挖掘机工作,要比10 个工人挖掘提前 3 天 完成,一台挖掘机的工作效率是一个工人工作效率的() ABCD 【考点】列代数式(分式) 【分析】此题可利用工作总量作为相等关系,借助方程解题 【解答】解:设一台插秧机的工作效率为 x,一个人工作效率为 y 则 10my=(m3)x 所以= 故

18、选:D 【点评】 本题主要考查了列代数式的知识, 列代数式的关键是正确理解文字语言 中的关键词,找到其中的数量关系,工程问题要有 “工作效率”,“工作时间”,“工 作总量”三个要素,数量关系为:工作效率工作时间=工作总量 10 (4 分)在平面直角坐标系 xOy 中,对于点 P(x,y) ,我们把点 P1(y+1, x+1)叫做点 P 的伴随点,已知点 A1的伴随点为 A2,点 A2的伴随点为 A3,点 A3 的伴随点为 A4,这样依次得到点 A1,A2,A3,An,若点 A1的坐标为(3, 1) ,则点 A2015的坐标为() A (0,4) B (3,1)C (0,2)D (3,1) 【考

19、点】规律型:点的坐标 【分析】根据伴随点的定义,罗列出部分点 A 的坐标,根据点 A 的变化找出规 律“A4n +1(3,1) ,A4n+2(0,4) ,A4n+3(3,1) ,A4n+4(0,2) (n 为自然数)”, 根据此规律即可解决问题 【解答】解:观察,发现规律:A1(3,1) ,A2(0,4) ,A3(3,1) ,A4(0, 2) ,A5(3,1) , A4n +1(3,1) ,A4n+2(0,4) ,A4n+3(3,1) ,A4n+4(0,2) (n 为自然数) 2015=4503+3, 点 A2015的坐标为(3,1) 故选 B , 【点评】本题考查了规律型中的点的坐标,解题的

20、关键是发现规律“A 4n+1 (3,1) , A4n +2(0,4) ,A4n+3(3,1) ,A4n+4(0,2) (n 为自然数)”本题属于基础 题,难度不大,解决该题型题目时,罗列出部分点的坐标,根据点的坐标的变化 发现规律是关键 二、填空题(本题有二、填空题(本题有 6 6 小题,每小题小题,每小题 5 5 分,共分,共 3030 分分 11 (5 分)点 A(3,2)关于 x 轴的对称点 A的坐标为(3,2) 【考点】关于 x 轴、y 轴对称的点的坐标 【分析】根据“关于 x 轴对称的点,横坐标相同,纵坐标互为相反数”解答 【解答】解:点 A(3,2)关于 x 轴对称的点的坐标为(3

21、,2) 故答案为: (3,2) 【点评】本题考查了关于 x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好 对称点的坐标规律: (1)关于 x 轴对称的点,横坐标相同,纵坐标互为相反数; (2)关于 y 轴对称的点,纵坐标相同,横坐标互为相反数; (3)关于原点对称的点,横坐标与纵坐标都互为相反数 12 (5 分)因式分解:x24y2=(x+2y) (x2y) 【考点】因式分解-运用公式法 【分析】直接运用平方差公式进行因式分解 【解答】解:x24y2=(x+2y) (x2y) 【点评】本题考查了平方差公式分解因式,熟记公式结构是解题的关键平方差 公式:a2b2=(a+b) (ab) 13

22、(5 分)等腰三角形一边等于 4,另一边等于 2,则周长是10 【考点】等腰三角形的性质;三角形三边关系 【分析】因为等腰三角形的两边分别为 4 和 2,但没有明确哪是底边,哪是腰, 所以有两种情况,需要分类讨论 【解答】解:当 4 为底时,其它两边都为 2,2、2、4 不可以构成三角形; 当 4 为腰时,其它两边为 4 和 2,4、4、2 可以构成三角形,周长为 10, 故答案为:10 【点评】 本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等 腰三角形, 若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的 前提下分类讨论 14 (5 分)若 ab=5,ab=3,则

23、a2+b2=31 【考点】完全平方公式 【专题】计算题;整式 【分析】把 ab=5 两边平方,利用完全平方公式化简,将 ab=3 代入即可求出所 求式子的值 【解答】解:把 ab=5 两边平方得: (ab)2=a2+b22ab=25, 将 ab=3 代入得:a2+b2=31, 故答案为:31 【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键 15 (5 分)当三角形中一个内角 是另一个内角 的两倍时,我们称此三角形 为“特征三角形”,其中 称为“特征角”如果一个直角三角形为“特征三角形”, 那么它的“特征角”等于90 或 60度 【考点】三角形内角和定理 【分析】根据“特征角

24、”的定义,结合直角三角形的性质即可得出结论 【解答】解:“特征角” 为 90; “特征角”与“另一个内角”都不是直角时,设“特征角是 2x”, 由题意得,x+2x=90, 解得:x=30, 所以,“特征角”是 60, 综上所述,这个“特征角”的度数为 90或 60 故答案为:90 或 60 【点评】本题考查的是三角形内角和定理,熟知三角形内角和是 180是解答此 题的关键 16 (5 分)如图,把面积为 1 的等边ABC 的三边分别向外延长 m 倍,得到 A1B1C1,那么A1B1C1的面积是3m2+3m+1(用含 m 的式子表示) 【考点】等边三角形的性质 【分析】连接 AB1,BC1,CA

25、1,根据等底等高的三角形的面积相等求出ABB1, A1AB1的面积,从而求出A1BB1的面积,同理可求B1CC1的面积,A1AC1 的面积,然后相加即可得解 【解答】解:如图,连接 AA1,B1C2,BC1,如图所示: 把面积为 1 的等边ABC 的三边分别向外延长 m 倍, A1 AB 的面积=BC2C1的面积=AB1C2的面积=m1=m, 同理:A1B1 A 的面积=B1 C1 C2的面积=A1 BC1的面积=mm=m2, A1B1C1的面积=3m2+3m+1; 故答案为:3m2+3m+1 【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等, 作辅助线把三角形进行分割是解

26、题的关键 三、解答题(本题有三、解答题(本题有 8 8 小题,第小题,第 17201720 题每题题每题 8 8 分,第分,第 2121 题题 1010 分,第分,第 2222、2323 题每题题每题 1212 分,第分,第 2424 题题 1414 分,共分,共 8080 分分 17 (4 分)分解因式:4xy2+4x2y+y3 【考点】提公因式法与公式法的综合运用 【分析】首先提取公因式 y,进而利用完全平方公式分解因式得出答案 【解答】解:4xy2+4x2y+y3 =y(4xy+4x2+y2) =y(y+2x)2 【点评】 此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解

27、题关键 18 (4 分)解方程: 【考点】解分式方程 【专题】计算题 【分析】观察可得 2x=(x2) ,所以可确定方程最简公分母为: (x2) ,然 后去分母将分式方程化成整式方程求解注意检验 【解答】解:方程两边同乘以(x2) , 得:x3+(x2)=3, 解得 x=1, 检验:x=1 时,x20, x=1 是原分式方程的解 【点评】 (1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程 求解 (2)解分式方程一定注意要验根 (3)去分母时有常数项的不要漏乘常数项 19 (8 分)先化简再求值: ( 【考点】分式的化简求值 【分析】先约分化简,再计算括号,最后代入化简即可 【

28、解答】解:原式= ),其中 x=3 =( = = , ) 当 x=3 时,原式=1 【点评】本题考查分式的混合运算、乘法公式等知识,解题的关键是灵活掌握分 式的混合运算法则,注意简便运算,属于中考常考题型 20 (8 分)在ABC 中,D 是 BC 边上的中点,F、E 分别是 AD 及其延长线上的 点,CFBE求证:CF=BE 【考点】全等三角形的判定与性质 【专题】证明题 【分析】 利用 CFBE 和 D 是 BC 边的中点可以得到全等条件证明BDECDF, 从而得出结论 【解答】证明:D 是 BC 边上的中点, BD=CD, 又CFBE, E=CFD,DBE=FCD BDECFD, CF=

29、BE 【点评】本题主要考查了全等三角形的判定与性质,难度适中 21 (8 分)一个等腰直角三角板如图搁置在两柜之间,且点 D,C,E 在同一直 线上,已知稍高的柜高 AD 为 80cm,两柜距离 DE 为 140cm求稍矮的柜高 BE 【考点】全等三角形的应用 【分析】首先证明ADCCEB,根据全等三角形的性质可得 AD=CE,DC=BE, 进而可得 CE 的长,然后可得 DC 的长度,从而求出 BE 长 【解答】解:由题意得:ADC=ACB=BEC=90,AC=BC, ACB=90, ACD+BCE=90, BEC=90, BCE+CBE=90, ACD=CBE, 在ADC 和CEB 中,

30、ADCCEB(AAS) , AD=CE,DC=BE, AD=80cm, CE=80cm, DE=140cm, DC=60cm, BE=60cm 【点评】 此题主要考查了全等三角形的应用, 关键是掌握全等三角形的判定定理: SSS、SAS、ASA、AAS、HL 22 (10 分)某校为了丰富学生的校园生活,准备购进一批篮球和足球其中篮 球的单价比足球的单价多 40 元, 用 1500 元购进的篮球个数与 900 元购进的足球 个数相等 (1)篮球和足球的单价各是多少元? (2)该校打算用 800 元购买篮球和足球,恰好用完 800 元,问有哪几种购买方 案? , 【考点】分式方程的应用;二元一次

31、方程的应用 【分析】 (1)设足球单价为 x 元,则篮球单价为(x+40)元,根据题意可得等量 关系:1500 元购进的篮球个数=900 元购进的足球个数,由等量关系可得方程, 再求解即可; (2)设恰好用完800 元,可购买篮球m 个和购买足球 n 个,根据题意可得篮球 的单价篮球的个数 m+足球的单价足球的个数 n=800,再求出整数解即可得 出答案 【解答】解:设足球单价为 x 元,则篮球单价为(x+40)元,由题意得: =, 解得:x=60, 经检验:x=60 是原分式方程的解, 则 x+40=100, 答:篮球和足球的单价各是 100 元,60 元; (2)设恰好用完 800 元,可

32、购买篮球 m 个和购买足球 n 个, 由题意得:100m+60n=800, 整理得:m=8n, m、n 都是正整数, n=5 时,m=5,n=10 时,m=2; 有两种方案: 购买篮球 5 个,购买足球 5 个; 购买篮球 2 个,购买足球 10 个 【点评】 此题主要考查了分式方程和二元一次方程的应用, 关键是正确理解题意, 找出题目中的等量关系,列出方程 23 (12 分)探究题: (1)各个角都相等,各条边都相等的多边形叫做正多边形; (2)如图,格点长方形MNPQ 的各点分布在边长均为 1 的等边三角形组成的网 格上,请在格点长方形 MNPQ 内画出一个面积最大的格点正六边形 ABCD

33、EF,并 简要说明它是正六边形的理由; (3)正六边形有9条对角线,它的外角和为360度 【考点】正多边形和圆 【分析】 (1)直接用正多边形的定义得出结论即可; (2)用网格线的特征和正六边形的性质,画出图形即可; (3)根据多边形的对角线条数的确定方法和多边形的外角和定理即可 【解答】解: (1)由正多边形的定义:各个角都相等,各条边都相等的多边形叫 做正多边形; 故答案为:各个角;各条边; (2)如图, AB=2,BC=2,CD=2,DE=2,EF=2,FA=2, AB=BC=CD=DE=EF=FA, 网格是等边三角形的网格, FAB=260=120, 同理:ABC=BCD=CDE=DEF=EFA=120, FAB=ABC=BCD=CDE=DEF=EFA=120, 六边形 ABCDEFA是正六边形 最大面积为 24; (3)正六边形的对角线条数为 多边形的外角和是 360, 正六边形的外角和为 360, 故答案为:9;360 =9, 【点评】此题是正多边形和圆,主要考查了正多边形的定义,正六边形的性质, 网格线的特点, 多边形的对角线的确定和多边形的外角和定理,解本题的关键掌 握正六边形的性质 24 (12 分)阅读理解: (请仔细阅读,认真思考,灵活应用) 【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论