版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、十年高考分类解析与应试策略数学第五章 平面向量与直线、平面、简单几何体(B)考点阐释1.向量是数学中的重要概念,并和数一样,也能运算.它是一种工具,用向量的有关知识能有效地解决数学、物理等学科中的很多问题.向量法和坐标法是研究和解决向量问题的两种方法.坐标表示,使平面中的向量与它的坐标建立了一一对应关系,用“数”的运算处理“形”的问题,在解析几何中有广泛的应用.向量法便于研究空间中涉及直线和平面的各种问题.2.平移变换的价值在于可利用平移变换,使相应的函数解析式得到简化.试题类编一、选择题1.(2002上海春,13)若a、b、c为任意向量,mR,则下列等式不一定成立的是( )A.(a+b)+c
2、=a+(b+c) B.(a+b)c=ac+bcC.m(a+b)=ma+mb D.(ab)c=a(bc)2.(2002天津文12,理10)平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(1,3),若点C满足,其中、R,且+=1,则点C的轨迹方程为( )A.3x+2y11=0 B.(x1)2+(y2)2=5C.2xy=0 D.x+2y5=03.(2001江西、山西、天津文)若向量a=(3,2),b=(0,1),则向量2ba的坐标是( )A.(3,4) B.(3,4) C.(3,4) D.(3,4)4.(2001江西、山西、天津)设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点
3、,则等于( )图51A. B. C.3 D.35.(2001上海)如图51,在平行六面体ABCDA1B1C1D1中,M为AC与BD的交点,若=a,=b,=c.则下列向量中与相等的向量是( )A.a+b+cB. a+b+cC. ab+cD.ab+c6.(2001江西、山西、天津理,5)若向量a=(1,1),b=(1,1),c=(1,2),则c等于( )A.a+b B.ab C. ab D.a+b7.(2000江西、山西、天津理,4)设a、b、c是任意的非零平面向量,且相互不共线,则(ab)c(ca)b=0 |a|b|0).如图52.(1)证明:三棱柱ABCA1B1C1是正三棱柱;(2)若m=n,
4、求直线CA1与平面A1ABB1所成角的大小.17.(2002上海春,19)如图53,三棱柱OABO1A1B1,平面OBB1O1平面OAB,O1OB=60,AOB=90,且OB=OO1=2,OA=.求:(1)二面角O1ABO的大小;(2)异面直线A1B与AO1所成角的大小.(上述结果用反三角函数值表示)18.(2002上海,17)如图54,在直三棱柱ABOABO中,OO=4,OA=4,OB=3,AOB=90,D是线段AB的中点,P是侧棱BB上的一点,若OPBD,求OP与底面AOB所成角的大小.(结果用反三角函数值表示)图53 图54 图5519.(2002天津文9,理18)如图55,正三棱柱AB
5、CA1B1C1的底面边长为a,侧棱长为a.(1)建立适当的坐标系,并写出点A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.20.(2002天津文22,理21)已知两点M(1,0),N(1,0),且点P使成公差小于零的等差数列.(1)点P的轨迹是什么曲线?(2)若点P坐标为(x0,y0),为与的夹角,求tan.21.(2001江西、山西、天津理)如图56,以正四棱锥VABCD底面中心O为坐标原点建立空间直角坐标系Oxyz,其中OxBC,OyAB,E为VC的中点,正四棱锥底面边长为2a,高为h.(1)求cos;(2)记面BCV为,面DCV为,若BED是二面角VC的平面角,求BE
6、D.图56 图57 图5822.(2001上海春)在长方体ABCDA1B1C1D1中,点E、F分别在BB1、DD1上,且AEA1B,AFA1D.(1)求证:A1C平面AEF;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角).则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成角的大小.(用反三角函数值表示)23.(2001上海)在棱长为a的正方体OABCOABC中,E、F分别是棱AB、BC上的动点,且AE=BF.如图58.(1)求证:AFCE.
7、(2)当三棱锥BBEF的体积取得最大值时,求二面角BEFB的大小(结果用反三角函数表示)24.(2000上海春,21)四棱锥PABCD中,底面ABCD是一个平行四边形, =2,1,4,=4,2,0,=1,2,1.(1)求证:PA底面ABCD;(2)求四棱锥PABCD的体积;(3)对于向量a=x1,y1,z1,b=x2,y2,z2,c=x3,y3,z3,定义一种运算:(ab)c=x1y2z3+x2y3z1+x3y1z2x1y3z2x2y1z3x3y2z1,试计算()的绝对值的值;说明其与四棱锥PABCD体积的关系,并由此猜想向量这一运算()的绝对值的几何意义.25.(2000上海,18)如图59
8、所示四面体ABCD中,AB、BC、BD两两互相垂直,且AB=BC=2,E是AC中点,异面直线AD与BE所成的角的大小为arccos,求四面体ABCD的体积.图59 图510 图51126.(2000天津、江西、山西)如图510所示,直三棱柱ABCA1B1C1中,CA=CB=1,BCA=90,棱AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos的值;(3)求证:A1BC1M.27.(2000全国理,18)如图511,已知平行六面体ABCDA1B1C1D1的底面ABCD是菱形且C1CB=C1CD=BCD=60.(1)证明:C1CBD;(2)假定CD=2,CC1=,记面C1
9、BD为,面CBD为,求二面角BD的平面角的余弦值;(3)当的值为多少时,能使A1C平面C1BD?请给出证明.图51228.(1999上海,20)如图512,在四棱锥PABCD中,底面ABCD是一直角梯形,BAD=90,ADBC,AB=BC=a,AD=2a,且PA底面ABCD,PD与底面成30角.(1)若AEPD,E为垂足,求证:BEPD;(2)求异面直线AE与CD所成角的大小.图51329.(1995上海,21)如图513在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,0),点D在平面yOz上,且BDC=90,DCB=30.(1)求向量的坐标;(2)设向量和的夹角为,求cos的
10、值.答案解析1.答案:D解析:因为(ab)c=|a|b|cosc而a(bc)=|b|c|cosa而c方向与a方向不一定同向.评述:向量的积运算不满足结合律.2.答案:D解析:设=(x,y),=(3,1),=(1,3),=(3,),=(,3)又+=(3,+3)(x,y)=(3,+3),又+=1 因此可得x+2y=5评述:本题主要考查向量法和坐标法的相互关系及转换方法.3.答案:D解析:设(x,y)=2ba=2(0,1)(3,2)=(3,4).评述:考查向量的坐标表示法.4.答案:B解法一:设A(x1,y1),B(x2,y2),AB所在直线方程为y=k(x),则=x1x2+y1y2.又,得k2x2
11、(k2+2)x+=0,x1x2=,而y1y2=k(x1)k(x2)=k2(x1)(x2)=1.x1x2+y1y2=1=.解法二:因为直线AB是过焦点的弦,所以y1y2=p2=1.x1x2同上.评述:本题考查向量的坐标运算,及数形结合的数学思想.5.答案:A解析:=c+(a+b)=a+b+c评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.6.答案:B解析:设c=ma+nb,则(1,2)=m(1,1)+n(1,1)=(m+n,mn). 评述:本题考查平面向量的表示及运算.7.答案:D解析:平面向量的数量积不满足结合律
12、.故假;由向量的减法运算可知|a|、|b|、|ab|恰为一个三角形的三条边长,由“两边之差小于第三边”,故真;因为(bc)a(ca)bc=(bc)ac(ca)bc=0,所以垂直.故假;(3a+2b)(3a2b)=9aa4bb=9|a|24|b|2成立.故真.评述:本题考查平面向量的数量积及运算律.8.答案:A解析:设直线l的方程为y=kx+b(此题k必存在),则直线向左平移3个单位,向上平移1个单位后,直线方程应为y=k(x+3)+b+1即y=kx+3k+b+1因为此直线与原直线重合,所以两方程相同.比较常数项得3k+b+1=b.k=.评述:本题考查平移变换与函数解析式的相互关系.9.答案:1
13、3解析:(2ab)a=2a2ba=2|a|2|a|b|cos120=2425()=13.评述:本题考查向量的运算关系.10.答案:90解析:由|+|=|,可画出几何图形,如图514.图514|表示的是线段AB的长度,|+|表示线段OC的长度,由|AB|=|OC|平行四边形OACB为矩形,故向量与所成的角为90评述:本题考查向量的概念,向量的几何意义,向量的运算.这些知识不只在学习向量时用到,而且在复数、物理学中也是一些最基本的知识.11.答案:4解析:=1,2,=3,m,=4,m2,又,14+2(m2)=0,m=4.评述:本题考查向量的概念,向量的运算,向量的数量积及两向量垂直的充要条件.12
14、.答案:()解析:设a=2+i,b=,由已知、的夹角为,由复数乘法的几何意义,得=(cos+isin)=(2+i).b=()评述:本题考查向量的概念,向量与复数一一对应关系,考查变通、变换等数学方法,以及运用数学知识解决问题的能力.a+b=(m+2)i+(m4)j=(m+2,m4)ab=mi+(m2)j=(m,m2)13.答案:2解析:由题意,得(a+b)(ab),(m+2)m+(m4)(m2)=0,m=2.评述:本题考查平面向量的加、减法,平面向量的数量积及运算,两向量垂直的充要条件.a+b=2i8jab=8i+16j14.答案:63解析:解方程组a=3i+4j=(3,4)b=5i12j=(
15、5,12)得ab=(3)5+4(12)=63.评述:本题考查平面向量数量积的坐标表示及求法.15.答案:(4,2)解析:设P(x,y),由定比分点公式,则P(2,1),又由中点坐标公式,可得B(4,2).16.(1)证明:,| |=m,又|=m,|=m,ABC为正三角形.又=0,即AA1AB,同理AA1AC,AA1平面ABC,从而三棱柱ABCA1B1C1是正三棱柱.(2)解:取AB中点O,连结CO、A1O.COAB,平面ABC平面ABB1A1,CO平面ABB1A1,即CA1O为直线CA1与平面A1ABB1所成的角.在RtCA1O中,CO=m,CA1=,sinCA1O=,即CA1O=45.图51
16、517.解:(1)取OB的中点D,连结O1D,则O1DOB.平面OBB1O1平面OAB,O1D平面OAB. 过D作AB的垂线,垂足为E,连结O1E.则O1EAB.DEO1为二面角O1ABO的平面角.由题设得O1D=,sinOBA=,DE=DBsinOBA=在RtO1DE中,tanDEO1=,DEO1=arctan,即二面角O1ABO的大小为arctan.(2)以O点为原点,分别以OA、OB所在直线为x、y轴,过O点且与平面AOB垂直的直线为z轴,建立空间直角坐标系如图515.则O(0,0,0),O1(0,1,),A(,0,0),A1(,1,),B(0,2,0).设异面直线A1B与AO1所成的角
17、为,则,cos=,异面直线A1B与AO1所成角的大小为arccos.图51618.解法一:如图516,以O点为原点建立空间直角坐标系.由题意,有B(3,0,0),D(,2,4),设P(3,0,z),则=,2,4,=3,0,z.BDOP,=+4z=0,z=.BB平面AOB,POB是OP与底面AOB所成的角.tanPOB=,POB=arctan.图517解法二:取OB中点E,连结DE、BE,如图517,则DE平面OBBO,BE是BD在平面OBBO内的射影.又OPBD.由三垂线定理的逆定理,得OPBE.在矩形OBBO中,易得RtOBPRtBBE,得BP=.图518(以下同解法一)19.解:(1)如图
18、518,以点A为坐标原点O,以AB所在直线为Oy轴,以AA1所在直线为Oz轴,以经过原点且与平面ABB1A1垂直的直线为Ox轴,建立空间直角坐标系.由已知,得A(0,0,0),B(0,a,0),A1(0,0, a),C1().(2)坐标系如图,取A1B1的中点M,于是有M(0, a),连AM,MC1有=(a,0,0),且=(0,a,0),=(0,0, a)由于=0,=0,所以MC1面ABB1A1.AC1与AM所成的角就是AC1与侧面ABB1A1所成的角.=(),=(0,a),=0+2a2=a2.而|=.|=.cos,=.所以与所成的角,即AC1与侧面ABB1A1所成的角为30.20.解:(1)
19、记P(x,y),由M(1,0),N(1,0)得=(1x,y),=(1x,y),=(2,0)=2(1+x),=x2+y21,=2(1x).于是,是公差小于零的等差数列等价于 即所以,点P的轨迹是以原点为圆心,为半径的右半圆.(2)点P的坐标为(x0,y0).=x02+y021=2.|=.cos=21.解:(1)由题意知B(a,a,0),C(a,a,0),D(a,a,0),E().由此得,.由向量的数量积公式有cos(2)若BED是二面角VC的平面角,则,则有0.又由C(a,a,0),V(0,0,h),有(a,a,h)且,.即ha,这时有cos,BEDarccos()arccos评述:本小题主要考
20、查空间直角坐标的概念、空间点和向量的坐标表示以及两个向量夹角的计算方法;考查运用向量研究空间图形的数学思想方法.22.(1)证明:因为CB平面A1B,所以A1C在平面A1B上的射影为A1B.由A1BAE,AE平面A1B,得A1CAE.同理可证A1CAF.因为A1CAF,A1CAE,图519所以A1C平面AEF.(2)解:过A作BD的垂线交CD于G,因为D1DAG,所以AG平面D1B1BD.设AG与A1C所成的角为,则即为平面AEF与平面D1B1BD所成的角.由已知,计算得DG=.如图519建立直角坐标系,则得点A(0,0,0),G(,3,0),A1(0,0,5),C(4,3,0).AG=,3,
21、0,A1C=4,3,5.因为AG与A1C所成的角为,所以cos=.由定理知,平面AEF与平面D1B1BD所成角的大小为arccos.注:没有学习向量知识的同学可用以下的方法求二面角的平面角.解法一:设AG与BD交于M,则AM面BB1D1D,再作ANEF交EF于N,连接MN,则ANM即为面AEF与D1B1BD所成的角,用平面几何的知识可求出AM、AN的长度.解法二:用面积射影定理cos=.评述:立体几何考查的重点有三个:一是空间线面位置关系的判定;二是角与距离的计算;三是多面体与旋转体中的计算.23.建立坐标系,如图520.(1)证明:设AE=BF=x,则A(a,0,a),F(ax,a,0),C
22、(0,a,a),E(a,x,0)=x,a,a,=a,xa,a.=xa+a(xa)+a2=0AFCE(2)解:设BF=x,则EB=ax三棱锥BBEF的体积V=x(ax)a()2=a3当且仅当x=时,等号成立.因此,三棱锥BBEF的体积取得最大值时BE=BF=,过B作BDEF于D,连BD,可知BDEF.BDB是二面角BEFB的平面角在直角三角形BEF中,直角边BE=BF=,BD是斜边上的高.BD=a.tanBDB=故二面角BEFB的大小为arctan2.评述:本题考查空间向量的表示、运算及两向量垂直的充要条件.二次函数求最值或均值不等式求最值,二面角等知识.考查学生的空间想象能力和运算能力.用空间
23、向量的观点处理立体几何中的线面关系,把几何问题代数化,降低了立体几何的难度.本题考查的线线垂直等价于=0,使问题很容易得到解决.而体积的最值除用均值不等式外亦可用二次函数求最值的方法处理.二面角的平面角的找法是典型的三垂线定理找平面角的方法,计算较简单,有一定的思维量.24.(1)证明:=22+4=0,APAB.又=4+4+0=0,APAD.AB、AD是底面ABCD上的两条相交直线,AP底面ABCD.(2)解:设与的夹角为,则cos=V=|sin|=(3)解:|()|=|43248|=48它是四棱锥PABCD体积的3倍.猜测:|()|在几何上可表示以AB、AD、AP为棱的平行六面体的体积(或以
24、AB、AD、AP为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力.图52125.解:如图521建立空间直角坐标系由题意,有A(0,2,0)、C(2,0,0)、E(1,1,0)设D点的坐标为(0,0,z)(z0)则=1,1,0,=0,2,z,设与所成角为.则=cos=2,且AD与BE所成的角的大小为arccos.cos2=,z=4,故|BD|的长度为4.又VABCD=|AB|BC|BD|=,因此,四面体ABCD的
25、体积为.评述:本题考查空间图形的长度、角度、体积的概念和计算.以向量为工具,利用空间向量的坐标表示、空间向量的数量积计算线段的长度、异面直线所成角等问题,思路自然,解法灵活简便.图52226.解:如图522,建立空间直角坐标系Oxyz.(1)依题意得B(0,1,0)、N(1,0,1)| |=.(2)依题意得A1(1,0,2)、B(0,1,0)、C(0,0,0)、B1(0,1,2)=1,1,2,=0,1,2,=3,|=,|=cos=.(3)证明:依题意,得C1(0,0,2)、M(,2),=1,1,2,=,0.=+0=0,A1BC1M.评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向
26、量垂直的充要条件.27.(1)证明:设=a,=b,=c,则|a|=|b|,=ba,=(ba)c=bcac=|b|c|cos60|a|c|cos60=0,C1CBD.(2)解:连AC、BD,设ACBD=O,连OC1,则C1OC为二面角BD的平面角.(a+b),(a+b)c(a+b)(a+b)c=(a2+2ab+b2)acbc=(4+222cos60+4)2cos602cos60=.则|=,|=,cosC1OC=(3)解:设=x,CD=2, 则CC1=.BD平面AA1C1C,BDA1C只须求满足:=0即可.设=a,=b,=c,=a+b+c,=ac,=(a+b+c)(ac)=a2+abbcc2=6,令6=0,得x=1或x=(舍去)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度金融服务合同:贷款业务与风险管理协议
- 二零二四年度智能家居设备销售合同2篇
- 二零二四年度企业信息安全保障协议
- 二零二四年度物流服务合同条款
- 二零二四年度公务用车租赁合同:政府机关车辆租赁与维护服务3篇
- 二零二四年度建筑工程废料处理承包合同
- 二零二四年度广告投放合作协议书(第二期)
- 二零二四年度市场营销推广合同(含广告投放与效果评估)3篇
- 二零二四年度网络推广合同详细条款及标的
- 高端家政服务个性化定制合同(04版)
- GB/T 43602-2023物理气相沉积多层硬质涂层的成分、结构及性能评价
- 江苏省二级建造师(市政工程专业)继续教育课后习题及答案
- 乙状结肠癌学习课件
- 《问题分析与决策》培训课程大纲
- 包头市业主委员会管理制度
- 人教部编版八年级语文上册-第六单元-基础知识专项训练(含答案)
- 发展汉语-初级读写-第一课-你好
- 学校校史室管理制度
- 接人待物礼仪培训
- 医院科主任竞聘上岗实施方案9篇
- 《变废为宝有妙招-》四年级上册
评论
0/150
提交评论